C.C.M.A.C. – 1st Meeting – September 19, 2013 # COMMON CORE MATHEMATICS ADVISORY COMMITTEE ## Welcome, and Thank You! You are a part of a very important group of experts. You are all being asked to help chart a course for the future of math in San Gabriel USD. The Common Core represents both a challenge and an opportunity for us to lay out a successful course for San Gabriel's schools that will last for years to come. #### CCMAC - GOALS #### **Elementary** Research and create new assessments that align with planned Common Core assessments #### Secondary Recommend a Secondary Math Pathway for the District **Identify Necessary Instructional Shifts** Identify Necessary Types of Technology Tools Write a Common Core Math Transition Plan #### After Five Years of NCLB #### PISA rankings show United States trailing other OECD countries Note: Results are for OECD countries; OECD partner countries not included. Differences may not be statistically significant. SOURCE: OECD #### After Over 10 Years of NCLB By MOTOKO RICH Published: December 11, 2012 #### U.S. Students Rank 32 in Math Proficiency, 17 in Reading, Study Says By School Library Journal Archive Content on 🚟 August 23, 2011 By SLJ Staff, 8/23/2011 Our nation's graduating high school class of 2011 had a 32 percent proficiency rate in math and a 31 percent proficiency rate in reading, leaving many to question whether schools are adequately preparing students for the 21st century global economy, says a new report. U.S. students fall behind 31 countries in math proficiency and behind 16 countries in reading proficiency, according to the recent study, "Globally Challenged: Are U.S. Students Ready to Compete?" by Harvard's Program on Education Policy and Governance. | | U.S. (11th) | *Not statistically | different from U.S. | |-------------------------------|----------------|--------------------|---------------------| | 10. Ireland* | Russia* | England* | U.S. | | 9. Taiwan* | England* | U.S. | England* | | 8. Croatia* | Finland* | Finland* | Hong Kong | | 7. Denmark* | Belgium | Israel* | Russia | | 6. U.S. | N. Ireland | Russia | Slovenia | | 5. N. Ireland* | Japan | Japan | Finland | | 4. Singapore | Taiwan | Hong Kong | Japan | | 3. Finland | Hong Kong | Taiwan | Korea | | 2. Russia | Korea | Singapore | Taiwan | | Hong Kong | Singapore | Korea | Singapore | | 4TH GRADE READING | 4TH GRADE MATH | 8TH GRADE MATH | 8TH GRADE SCIENCE | #### What do other countries do? - Why do other countries consistently outperform the United States in these international measures? - There are a wide variety of possibilities - Socioeconomic reasons - Teacher recruitment/compensation - Systemic educational differences - It's likely not just one thing... but what can we do differently? | Topic | | Grade
2 | Grade
3 | Grade
4 | Grade
5 | Grade
6 | Grade
7 | Grade | |---|-----|------------|------------|------------|------------|------------|------------|-------| | Whole number meaning | 1 | • | • | 0 | 0 | | | 8 | | Whole number operations | | | | • | 0 | | | | | Measurement units | 0 | | | | • | | • | | | Common fractions | • | | 0 | | | 0 | • | | | Equations and formulas | | | 0 | • | 0 | 0 | • | • | | Data representation and analysis | | | 0 | 0 | 0 | 0 | | 0 | | 2-D geometry: basics | | | 0 | 0 | 0 | 0 | • | • | | Polygons and circles | | | | 0 | 0 | 0 | • | • | | Perimeter, area and volume | | | | 0 | 0 | 0 | 0 | 0 | | Rounding and significant figures | | | | 0 | 0 | | | | | Estimating computations | | | | 0 | 0 | 0 | | | | Properties of whole number operations | | | | 0 | 0 | | | | | Estimating quantity and size | | | | 0 | 0 | | | | | Decimal fractions | | | | 0 | • | 0 | | | | Relationship of common and decimal fractions | | | | 0 | • | 0 | | | | Properties of common and decimal fractions | | | | | 0 | 0 | | | | Percentages | | | | | 0 | 0 | 0.000 | | | Proportionality concepts | | | | | 0 | 0 | 0 | 0 | | Proportionality problems | | | | | 0 | 0 | • | • | | 2-D coordinate geometry | | | | | 0 | 0 | 0 | 0 | | Geometry: transformations | | | | | -22015 | 0 | 0 | 0 | | Negative numbers, integers and their properties | | | | | | 0 | 0 | | | Number theory | | | | | | | 0 | 0 | | Exponents, roots and radicals | | | | | | | 0 | 0 | | Exponents and orders of magnitude | | | | | | | 0 | 0 | | Measurement estimation and errors | | | | | | | 0 | | | Constructions w/ straightedge and compass | | | | | | | • | 0 | | 3-D geometry | | | | | | | 0 | • | | Congruence and similarity | | | | | | | | • | | Rational numbers and their properties | | | | | | | | 0 | | Patterns, relations and functions | | | | | | | | 0 | | Slope and trigonometry | | | | | | | | 0 | | Number of additional topics intended, on average, by A+ | 214 | 6/7 | E10 | 4/4 | 410 | 215 | 0140 | 3/7 | | countries to complete their curriculum at each grade level, 1 | 2/4 | 6/7 | 5/8 | 1/1 | 1/2 | 3/5 | 6/10 | 3// | # A+ Countries | Whole number meaning | • | • | • | • | • | • | • | • | |--|---|---|---|---|---|---|---|---| | Whole number operations | • | • | • | • | • | • | • | • | | Measurement units | • | • | • | • | • | • | • | • | | Common fractions | • | • | • | • | • | • | • | • | | Equations and formulas | • | • | • | • | • | • | | • | | Data representation and analysis | • | • | • | • | • | • | • | • | | 2-D geometry: basics | • | • | • | • | • | • | • | • | | Polygons and circles | • | • | • | • | • | • | • | • | | Perimeter, area and volume | • | • | • | • | • | • | • | • | | Rounding and significant figures | • | • | • | • | • | • | • | • | | Estimating computations | • | • | • | • | • | • | • | • | | Properties of whole number operations | • | • | • | • | • | • | • | • | | Estimating quantity and size | • | • | • | • | • | • | • | • | | Decimal fractions | • | • | • | • | • | • | • | • | | Relationship of common and decimal fractions | • | • | • | • | • | • | • | • | | Properties of common and decimal fractions | | | | | • | • | • | • | | Percentages | | | | | • | • | • | • | | Proportionality concepts | | | | | • | • | • | • | | Proportionality problems | | | | | • | • | • | • | | 2-D coordinate geometry | • | • | • | • | • | • | • | • | | Geometry: transformations | • | • | • | • | • | • | • | • | | Negative numbers, integers and their properties | | | | | • | • | • | • | | Number theory | • | • | • | • | • | • | • | • | | Exponents, roots and radicals | | | | | • | • | • | | | Exponents and orders of magnitude | • | • | • | • | • | • | • | • | | Measurement estimation and errors | • | • | • | • | • | • | • | • | | Constructions w/ straightedge/ruler and compass | • | • | • | • | • | • | • | • | | 3-D geometry | • | • | • | • | • | • | • | | | Congruence and similarity | • | • | • | • | • | • | • | • | | Rational numbers and their properties | | | | | • | • | • | • | | Patterns, relations and functions | • | • | • | • | • | • | • | • | | Slope and trigonometry | | | | | • | • | • | • | | Number of additional topics intended by the expert | 0 | 0 | 1 | 1 | 2 | 3 | 5 | 7 | standards to complete the US mathematics curriculum at each grade level. Topic Grade Grade Grade Grade Grade Grade Grade # United States ## The Common Core Response - Create standards that are - Coherent - Focused - Clear and Specific - The same goals for all US students - Identify key ideas, understandings, and skills - Emphasize deep learning of these concepts #### 1999 Standards vs. Common Core 1999 | CC 1999 | CC | | | Kinde | rgarten | | | |---|---|---|--|-----------|---| | Strand
Strand | CA Math Standard | Domain | Common Core Standard (CCS) | Alignment | Comment: in reference to CCS | | Number Sence | CA Math Standard 1.0 Students understand the relationship | | E.C.: Know number name: and | Yes | | | 1.0 Number Segue | 1.0 Student understant the reinforcing
between numbers and quantities (i.e., that
a set of objects has the same number of
objects in different unastons reguedless
of its position or arrangement). | Counting and
Cardinality | the counting sequence. | 16 | | | | 1.1 Compare two or more sets of objects
(up to mu objects its said group) and
sidentify which set is equal to, more than,
or less than the other. | Counting and
Cardinality | A.C.C. Course on sail the number of objects. Congress numbers. (Clenter Streeneed) K.C.C.S. Hondry whether the number of objects on any pray in greater than, lens than, or equal to the number of objects on numbers of open pc, p. you may numbers and counting studeges. K.C.C.S. Compass two numbers between 1 and 10 pre-existed as | Yes | *Note: Include groups up to ten
objects. | | | 1.2 Count, recognize, represent, name,
and order a number of obsects (up to 30). | Counting and
Cardinality | written manerals. K.CC.1: Count to 100 by ones and by tens. | Partial | CCS has students count to 30 and
by new and tune, but represent | | |
and over a manner of orgents sup to Juj. | Caratally | E.CC.2: Count forward beginning
from a green trumber within the
known requence (instead of
having to begin at 1). E.CC.3: Write numbers from 0 | | oy one; and work, our represent
and write numbers to 20 meteod
of 30 CCA).
CCS has students compare two
numbers (overtimes) but does not
numbers (overtimes) but does not
numbers ordering numbers. | | | | | 20. Represent a number of objects
with written numeral 0 - 20 (with 0
representing a count of no
objects). E. CC.5: Count to number "how
many" questions about as many. | | | | | | | as 20 things arranged in a line, a | | | | Straud | CA Mith Steadard | Domain | nectangular array, or a circle, or as
many as 10 things in a scattered
configuration, given a number
from 1-20, rount out that many | | Comments in reference to CCS | | | 1.3 Know that the larger numbers
describe sets with more objects in them
than the unsaller numbers have. | Counting and
Cardinality | objects K.C.C.4: Understand the selectionship between numbers and quantities; connect counting to cardinality. | Yes | | | | | | R.CC.4s: When counting objects,
say the number names in the
standard order, pairing each object
with one and only one number
name and each number name with
one and only one object. | | | | | | | K CC 4b: Understand that the last
number name said tells the number
of objects counted. The number of
objects is the same regardless of
their anangement or the order in
which they were counted. | | | | | | | K.CC.4c: Understand that each
inccessive number name refers
to a quantity that it one larger.
K.CC.6: Identify whether the | | | | | | | number of objects in one group
is greater than, less than, or
equal to the number of objects
in mesther group, e.g., by using
matching and counting
strategies.* | | | | 2.0 Number Seane | Students understand and describe
simple additions and subtractions. | Operations and
Algebraic
Thinking | K.OA: (Cluster Statement)
Understand addition as putting
together and adding to, and
understand robits ofton a taking
spart and taking from a | Yes | | | Strand | CA Math Steadard 2.1 Use concerts objects to determine the | Domain
Operation and | Common Core Standard (CCS)
E.O.A.1: Represent addition and
subtraction with objects, fingers, | Alignment | Comments in reference to CCS | | | CA Mith bleadard 2.1 Use consiste objects to detention the amover to addition and subtraction problems (for two smallers that are each less than 10). | Operations and
Algebraic
Thinking | (e.g., claps), setting out intustions,
verbal explanations, expressions
or equations. | | datash, but should shaw the
mathematics in the problem. | | | | | K.OA.2: Solve addition and
subtraction word problems, and
add and subtract within 10, e.g.,
by using objects or drawings to
represent the problem. | | _ | | 3.0 Number Seme | 3.0 Seadests we extinution strategies in
competition and problem solving that
survolve smallers that use the ones and
term places. | | | No | CCS does not mention estimation of quantities except in the Mathematical Position standards. Estimation is then described so "make conjectures about the form and meaning of the colution and meaning of the colution with the possible except by sixtegically using estimation and other mathematical knowledge." | | | 3.1 Recognize when an estimate in rescounts in | | | No | CCS does not mention estimation of quantities except in the Mathematical Practice transduck. Estimation is then described as "make conjectures about the form and meaning of the volvious sol detect possible extractly introduced to the state of the conjecture of the conjecture and the same of the volvious sold detect possible extractly introduced to the same and other mathematical knowledge." | | Strond
Algebra and
Tonotions | CA Math Standard | | | | | | Functions
1.0 Algebra and
Functions | 1.0 Students sort and classify objects. | Data | K.MD: Describe and compare
measurable attributes | Yes | | | 1 day and | 1.1 Heatify, sort, and classify objects by
attribute and identify objects that do not
belong to a particular group (e.g., all
these bolls are green, those are red). | Measurement and
Data | measurable attributes. K.3D.3. Classify objects into-
given categories; count the
numbers of object in each category-
and set the categories by count*. | Yes | *Note: Limit category counts to
be less than or equal to 10. | | Strand | CA Math Standard | Domain | Common Core Standard (CCS) | Allienment | Community in reference to CCS | |--|--|--------------------------|--|------------|--| | Strand
Measurement
and Geometry | CAMath Steadard | | | | | | I.O Measurement
and Geometry | 1.0 Students understand the concept of
time and units to measure it; they
understand that objects have properties,
such as length, weight, and capacity, and
that comparisons may be made by
seferring to those properties. | Measurement and
Data | E.MD: Describe and compare
maximable attaibute. Classify
objects into given cotegories;
count the numbers of objects in
each cotegory and set the
categories by count. (Charter
Statements) | Partial | 1MD (Cluster statement) Tell and write time. | | | 1.1 Compare the length, weight, and capacity of objects by making direct companions with reference objects (e.g., note which object is shorter, lengue, taller, lighter, heavier, or holds more). | Meaningement and
Date | K.MD.1: Describe measurable attributes of objects, such as length or weight. Describe actual teachers of objects of the control teachers of a single object. K.MD.2: Directly compare two objects with a measurable attribute in common, to see which object has "more offers off the attribute, and describe the difference." | Yes | | | | 1.2 Demonstrate an understanding of
concepts of time (e.g., morning,
affamous, evening, today, yesterday,
tomorow, week, year) and tools that
maxima time (e.g., clock, calendar). | | | Na | 1 MD 3: Tell and write time in
hours and half-hours using scales
and digital clocks. | | | 1.3 Name the days of the week. | | | No | | | | 1.4 Identify the time (to the nearest hour)
of everyday events (e.g., lauch time is 12
o'clock; bedtime is 8 o'clock at night). | | | No | 1 MD 3: Tell and write time in
hours and half-hours using malog
and digital clocks: | | 2.0 Measurement
and Geometry | 2.0 Students identify common objects in
their surviscement and describe the
prometric feature: | Geometry | K.G. Identify and decoube thapes
(squares, circles, triangle,
rectuggle, hexagons, cubes, cones
cylinders, and opheres). (Cluster
Statement) | Yes | | | Strand | CA Mark Standard | Domnin | Common Core Standard (CCS) | Alimment | Comment: in reference to CCS | | | 2.1 Identify and describe common
geometric objects (e.g., curcle, triangle,
square, rectangle, cube, sphere, cone). | Geometry | E.G.2. Correctly muse thapen
regardless of their orientation or
overall size. | Yes | | | | 2.2 Compare fassiliar plane and solid
objects by common attributes (e.g.,
publics, labor, size, reachers, number
of creater) | Consulty | K.G.2 Cornectly mass shapes regardless of their constitution or evental mas. K.G.4 Analyses and compare two-and these dissensional shapes, an different mice, and constitution, using unformal language to distort the maintaine, difference, parts (e.g., number of tubes and vertices) "consers") and other attribute (e.g., having sides of equal languagh). | Yes | | | Strand
Statistics, Data
Analysis, and
Probability | CA Math Standard | | | | | | 1.0 Statutes,
Data Analysis,
and Probability | 10 Students collect information about
objects and events in their environment. | | | No | 1.MD: (Cluster Statement)
Represent and interpret data. | | | Pore information questions; cellect
dats; and record the results using objects,
pictures, and picture graphs. | | | No | 1.httl 4: Organise, represent, as
interpret data with up to three
categories; aid and assower
questions about the total number
of data points, how usary in each
category, and how many more or
less see in one category than in
another. | | | 12 Identify, describe, and extend simple
patterns (such as circles or mangles) by
referring to their shapes, sizes, or colors. | | | | CCS does not mention patterns
except in the Mothematical
Practice Standards,
"mathematically proficient
students look closely to discern a
pattern or structure (in problem
solving). | #### Kindergarten Math Standards # Standards Removed in Red, Partially Removed in Yellow 1999 | CC 1999 | CC | Strand
Strand | CA Math Standard | Domnia | Common Core Standard (CCS) | Alignment | Comment: in reference to CCS | |------------------
---|--|--|-----------|--| | Number Sence | CA Math Standard | | | | | | 1.0 Number Sence | 1.0 Students understand the relationship
between numbers and quantities (i.e., that
a set of objects has the same number of
objects in different untuations regardless | Counting and
Cordinality | E.CC: Know number names and
the counting sequence.
E.CC: Count to tell the number of | Yes | | | | of its position or arrangement). | | objects: Compare mumbers.
(Cluster Statement) | | | | | 1.1 Computer two or more sets of objects
(up to that objects in each group) and
identify which set is equal to more flux,
or less than the other. | Counting and
Cardanisty | K.C. 6: Identify whether the
number of objects in one group is
greater than, less thom, or equal to
the number of objects in marther
group, e.g., by using matching and
counting strategies. * | Yes | *Note: Include groups up to ten
objects. | | | Page 1 | | E.CC.7: Compare two numbers
between 1 and 10 presented as
written numerals.
E.CC.1: Count to 100 by ones | | | | | Count, recognize, represent name,
and order a number of objects (up to 30). | Counting and
Cardinality | and by tem. E.CC.2: Count forward beginning from a given number within the | Partial | CCS has students count to 30 and
by ones and twos, but represent
and write numbers to 30 acrossed
of 30(CA).
CCS has students compare two | | | | | known sequence (autend of
having to begin at 1). | | manbers (written) but does not
mention ordering manbers. | | | | | K.CC.3: Write numbers from 0—
20. Represent a number of objects
with written numeral 0—20 (with 0
separating a count of no
objects). | | | | | | | E.CC.5: Count to answer 'how
many'?' questions about as many
as 20 things arranged in a line, a | | | | Strand | CA Math Steadard | Domain | Common Core Standard (CCS) | Aligament | Comments in reference to CCS | | | | | nectoagular array, or a circle, or as
many as 10 thangs as a scattered
configuration, given a number
from 1-20, count out that many
obserts. | | | | | 1.3 Know that the larger numbers
describe sets with more objects in them
than the smaller numbers have. | Counting and
Cartitulity | K.CC 4: Understand the
relationship between numbers and
quantities; connect counting to
cardinality. | Yes | | | | | | K.CC.4s: When counting objects,
say the number names in the
standard order, pairing each object
with one and only one number
name and each number name with
one and only one object. | | | | | | | K.CC-8b: Understand that the last
number name and tells the number
of objects counted. The number of
objects is the same regardless of
their arrangement or the order in
which they were counted. | | | | | | | K.CC.4c: Understand that each inccentive number name refers to a quantity that is one larger. | | | | | | | K.CC.6: Identify whether the
number of objects in one group
is greater than, less than, or
equal to the number of objects
in marther group, e.g., by using
matching and counting
strategies." | | | | 2.0 Number Secoe | 2.0 Students understand and describe
simple additions and subtractions. | Operations and
Algebraic
Thinking | K.O.A: (Cluster Statement)
Understand addition as putting
together and adding to, and
understand volutaction as taking
apart and taking from. | Yes | | | Strand | CA Math Steadard | Domain | C | Alignment | Comments in reference to CCS *Note: Drawings need not show | | | 2.1 Use concrete objects to determine the
answers to addition and submaction
problems (for two numbers that are each
less than 10). | Operations and
Algebrasic
Thinking | subtraction with objects, fingers,
mental images, drawings*, counts
(e.g., clips), acting our intuitions,
verbal explanations, exprections
or equations. | Yes | *Note: Drawings need not show
details, but should show the
numbersatics in the problem. | | | | | K.O.A.2: Solve addition and
subtraction word problems, and
add and saltract within 10, e.g.,
by using objects of armings to
represent the problem. | | | | 3.0 Number Sense | 3.0 Students we estimation strategies in
competition and problems solving that
involve smallers that use the ones and
term places. | | | No | CCS does not mention estimation of quantities except in the Mathematach Position translated. Estimation is then described as "make conjectures about the form and meaning of the solution and detect possible extent by stategorally using estimation and other mathematach knowledge." | | | 3.1 Recognize when an estimate in reaconable. | | | No | CCS does not mention estimation of quantities except in the Mathematical Practice studeds. Estimation is then described as "make conjectures about the form and meaning of the solution and detect possible extent by studegically using entirations and chemical extensions of the mathematical knowledge." | | Strand | | | | | annual and ready | | Strand | CA Math Standard | Domain | Common Core Standard (CCS) | Manuel | Comments in columns to CCS | |--|---|-------------------------|---|-----------|---| | Strand
Measurement
and Geometry | CA Math Steadard | District | Common Core Schuszer (CCS) | Augunear | Comment in Petersica in CCS | | .0 Measurement
and Geometry | 1.0 Students understand the concept of
time and units to measure it; they
understand that objects have properties,
such as length, weight, and especity, and
that companyons may be made by
referring to those properties. | Measurement and
Data | manurable attributes. Classify
objects into given categories;
count the numbers of objects in
each category and sort the
categories by count. (Cluster
Statements) | Partial | 1MD (Cleater statement) Tell
and write time | | | 1.1 Compute the length, weight and
capacity of object by making direct
companions with reflection objects (e.g.,
note which object is cluster, longer, taller,
lighbur, heavier, or holds more). | Meanmensent and
Data | E.M.D.1: Describe massurable
studiestes of objects, ruch as
length or weight. Describe overall
nanouable attained of a single
object. E.M.D.2: Directly compare two
objects with a measurable attained
in common, to see which object
has "more offers off the attribute,
and describe the difference. | Yes | | | | 1.2 Demonstrate an understanding of
concepts of time (e.g., meeting,
affamoon, evening, today, yesterday,
tomarous, week, year) and tools that
maxima time (e.g., clock, calenday). | | | Na | 1 MD 3: Tell and write time in
hour; and half-hour; using analog
and digital clocks. | | | 1.3 Name the days of the week. | | | No | | | | 1.4 Identify the time (to the nearest hour)
of everyday events (e.g., lanch time is 12
o'clock, bedtime is 8 o'clock at night). | | | No | 1.MD 3: Tell and write time in
bours and half-hours using malog
and digital clocks: | | D Measurement
and Geometry | 2.0 Students identify common objects in
their survicement and describe the
geometric feature. | Geometry | K.G. Identify and decoube thapes
(squares, riscles, triangle,
rectuggle, besuggons, cubes, cones
cylinders, and opheres). (Cluster
Somemen) | Yes | | | Strand | CA Math Standard | Domnia | Common Core Standard (CCS) | Alienment | Comments in reference to CCS | | | 2.1 Identify and describe common
geometric objects (e.g., curcle, triangle,
square, rectangle, cube, sphere, cone). | Geometry | E.G.2 Consectly mane thapes
regardless of their orientation or
overall size. | Yes | | | | 2.2 Compare faseilar plane and solid object by common attribute (e.g., position, labor, size, resealare), number of creenes). | Geometry | E.G.2 Correctly mass shapes regardless of their extentation or curvail mas. E.G.4 Analyse and compare two-and three-dimensional shapes, an different mice, and constations, using unformal language to describe their multilation, difference, parts [e.g., number of tubes and vertices"/consert"] and other strobute [e.g., having order of equal language]. | Yes | | | Strand
Statistics, Data
Analysis, and
Probability | CA Math Standard | | | | | | 1.0 Statutes,
Data Analysis,
and Probability | 10 Students collect information
about
objects and events in their environment. | | | No | 1.MD: (Cluster Statement)
Represent and interpret data. | | | 11 Pose information questions; cellect
dats; and record the results using objects;
pictures, and picture graphs. | | | 266 | 1.htD.4: Organism, represent, and
interpret data with up to there
categories, with and answer
questions about the total number
of data points, how many in each
category, and how many more or
last use in one category than in
another. | | | 12 Identify, describe, and extend simple
patterns (such as circles or triangles) by
referring to their shapes, sizes, or colors. | | | | CCS does not mention pattern
except in the Mothemstrial.
Practice Standards,
"mathematically prodicient
students look closely to disceen a
pattern or structure (in problem
solving.) | | | 1999 | l CC | 1999 | CC | |--|------|------|------|----| |--|------|------|------|----| | Strand | CA Math Standard | Domain | Common Core Standard (CCS) | Alignment | Comment: in reference to CC | |---|--|---|---|------------------|---| | Strand
Number Sense | CA Math Standard | | | | | | 1.0 Number Sense | Students understand the relationship
between numbers and quantities (i.e., that
a set of objects has the same number of
objects in different subations regardless | Counting and
Cordinality | K.CC: Know musber names and
the counting sequence. | Yes | | | | of its position or intageness). | | K.CC: Count to tell the number of
objects: Compare numbers.
(Cluster Statement)
K.CC:6: Identify whether the | | | | | 1.1 Compare two or more sets of objects
(up to tan objects in each group) and
identify which set is equal to, more than,
or Jeus than the other. | Counting and
Curdinality | K.C.C.6: Identify whether the
manber of objects in one group is
greater than, ben thum, or equal to
the number of objects in mother
group, e.g., by using matching and
counting strategae." | Yes | "Note: Include groups up to ten
objects. | | | | | E.CC.7: Compare two numbers
between 1 and 10 presented as | | | | | 1.2 Count, recognize, represent, name,
and order a number of objects (up to 30). | Counting and
Cardinality | written manerals. K.CC.1: Count to 100 by ones and by ten. K.CC.2: Count forward beginning from a given number within the known sequence (united of having to begin at 1). | Partial | CCS has students count to 30 m
by ones and twos, but represent
and write numbers to 20 inchest
of 300CA).
CCS has students compare two
manufacts (writing) but does no
mention ordering manufers. | | | | | K.CC.3: Write number: from 0-
20. Represent a number of objects
with written numeral 0-20 (with 0
representing a count of no
objects). | | | | | | | E.CC.5: Count to answer "how
many?" questions about as many
as 20 things arranged in a line, a | | | | Strand | CA Math Steadard | Domain. | Common Core Standard (CCS)
rectangular array, or a circle, or so
many as 10 things in a scattered
configuration; given a number
from 1-20, count out that many | Aligament | Comments in reference to Co | | | 1.3 Know that the larger numbers
describe sets with more objects in them
than the smaller numbers have. | Counting and
Cardinality | objects K.C.4. Understand the relationship between numbers and quantities; connect counting to cardinality. | Yes | | | | | | K.CC.4s: When counting objects,
say the number names in the
standard order, pairing each object
with one and only one number
name and each number name with
one and only one object. | | | | | | | K.CC-4b: Understand that the last
number same said tells the number
of objects counted. The number of
objects as the same regardless of
their arrangement or the order in
which they were counted. | | | | | | | K.CC.4c: Understand that each
ruccestive number name refers
to a quantity that it one larger. | | | | | | | K.CC.6: Identify whether the
number of objects in one group
is greater than, less than, or
equal to the number of objects
in marther group, e.g., by using
matching and counting
strategies.* | | | | 2.0 Number Sense | 2.0 Students understand and decembe
simple additions and subtractions. | Operations and
Algebraic
Thinking | K.OA: (Charter Statement)
Understand addition as putting
together and adding to, and
understand subtraction as taking
apart and taking from. | Yes | | | Straud | CA Mark Steadard 2.1 Use concerns objects to determine the
amover to addition and obtraction
problems (for two numbers that are each
less than 10). | Domain
Operations and
Algebraic
Thinking | Creamon Core Standard (CCS) K.O.A.1: Represent addition and subtraction with objects, fangers, mental images, drawings*, sounds (e.g., claps), acting out intusteen, webal explaintisms, expressions or equations. | Alignment
Yes | Comments in reference to C
*State: Discount used not the
detail, but should show the
mothematics in the problem. | | | | | K.O.A.2: Solve addition and
subtraction word problems, and
add and subtract within 10, e.g.,
by using objects or derivings to
represent the problem. | | | | 3.0 Number Sense | | | | | CCS does not mention estimate
of quantities except in the
Mathematical Process standard
Estimation is then denotibed as
"make conjectures about the for
and menting of the solution and
detect prosuble excess by
strategically using autimation a | | | | | | | strategically using estimators, other mathematical knowledge
CCS does not mention estimated
quantities succept in the
Mathematical Practice standard
Estimation is then described in
"make conjectures about the for
and menning of the solution so
detect possible extract by
strategically using estimation, other
other mathematical knowledge, | | Strand
Algebra and
Functions
1.0 Algebra and | CA Math Standard | | | | | | 1.0 Algebra and
Functions | 1.0 Students nort and classify objects. 1.1 Identify, nort, and classify objects by | Measurement and
Data
Measurement and | K.MD: Describe and compare
measurable attributes.
K.MD.3: Classify objects into | Yes | *Note: Limit category count: t | | | attribute and identify objects that do not
belong to a particular group (e.g., all
these balls are green, those are red). | Data | given categories; count the
numbers of object in each category
and sort the categories by count*. | 250 | be less than or equal to 10. | | Strand | CA Math Standard | Domain | Common Core Standard (CCS) | Alignment | Comments in reference to CCS | |--|--|-------------------------|---|-----------|---| | Strand
Measurement
and Geometry | CA Math Studend | | | | | | 0 Meanwennest
and Geometry | 1.0 Students understand the concept of
time and units to measure it; they
understand that objects have properties,
such as length, weight, and capacity, and
that comparisons may be made by
referring to those properties. | Measurement and
Data | E.MD: Describe and compare
measurable attributes. Classify
objects into gives categories;
count the numbers of objects in
each category and out the
categories by count. (Chater | Partial | 1.MD. (Charter statement) Tell and write time. | | | 1.1 Compare the length, weight, and
expectly of objects by making direct
comparisons with reference objects (e.g.,
note which object is shorter, longer, taller,
lighter, heavier, or holds more). | Measurement and
Date | Scotements E.MD.1: Describe measurable attributes of objects, such as length or weight. Describe several measurable attributes of a single object. | Yes | | | | | | E.MD.2: Directly compare two
objects with a measurable attribute
in common, to see which object
has "more offers off the attribute,
and describe the difference. | | | | | | | *************************************** | Na | 1 MD 3: Tell and write time in
hour; and half-hour; using analog
and digital clocks. | | | | | | Ne | | | | | | | No | 1 MD 3: Tell and write time in
hour; and half-hour; using analog
and digital clocks. | | O Measurement
and Geometry | 2.0 Students identify common objects in
their necessaries and
describe the
prometric features. | Geography | K.G. Identify and decorbe thapes
(squares, circles, triangle,
rectugile, besugons, cubes, cones
cylinders, and spheres). (Cluster
Scarement) | Yes | | | Strand | CA Math Stranford | Domain | Common Core Standard (CCS) | Alignment | Comment: in reference to CCS | | | 2.1 Identify and describe common
prometric objects (e.g., curcle, triangle,
square, rectangle, cube, sphere, cone). | Geometry | E.G.2 Correctly more shapes
regardless of their orientation or
overall size. | Yes | | | | 2.2 Compare families plans and solid
objects by common attributes (e.g.,
position, thape, size, roundness, number
of corners). | Geometry | K.G.2: Correctly mans shapes
regardless of their estentiation or
overall size.
K.G.4: Analyze and compare two- | Yes | | | | | | and three-dissensional slarpes, in
different times and orientation,
using suffernial language to
describe their similarities,
difference, partic (e.g., number of
sides and vertices" corners") and
other articlosis (e.g., having sides
of equal length). | | | | Strand
Statistics, Data
Analysis, and
Probability | CA Math Standard | | or edges services | | | | 1.0 Statutes,
Data Analysis,
and Probability | | | | No | 1.MD: (Cluster Statement)
Represent and unterpret data. | | | | | | No | 1.1(D.4: Organise, represent, as
interpret data with up to face
categories; aid and assower
questions about the total number
of data points, how many in each
category, and how many more or
last see in one category than in
another. | | | | | | | CCS does not mention patterns
except in the Mathematical
Practice Standards;
"mathematically proficient
students look closely to discens a
pattern or structure (in problem
solving.) | #### 1999 Standards vs. Common Core | Analy | sis of California Mathen | <i>atics</i> stan | dards to Common Co | ore stand | ards-Grade 1 | | | | | | | |----------------------------------|--|--|---|--------------|---|--|--|--|--|-----------------|--| | Strand | CA Math Standard | | Common Core Standard (CCS) | | | Strand | CA Math Stundard | Domain | Common Core Standard (CCS) | Alignment | Comment: in reference to C | | Number Sense
1.0 Number Sense | CA Mark Steadard 1.0 Student: understand and use numbers | Number and | 1.NBT: Extend the counting | Yes | | | | | | | other nurbenutical knowledge
other nurbenutical knowledge | | 7807 000000000000 | up to 100. 1.1 Count, read, and write whole number: to 100. | Operations in
Base Ten
Number and | sequence. (Cluster Statement) 1.NRT 1: Count to 120, stations at | Yes | | Strand
Algebra and
Function
1.0 Algebra and | CA Math Standard | | | | | | | | Operations in
Base Ten | 1.NBT.1: Count to 120, starting at
any number less than 120. In this
range, read and write numerals and
represent a number of objects with
a watten numeral. | | | 1.0 Algebra and
Functions | 1.0 Students use number sentences with
operational symbols and expressions to
solve problems. | | 1.OA: Represent and solve
problems involving addition and
subtraction. (Cluster Statement) | Yes | | | | 1.2 Compare and order whole numbers to
100 by using the symbols for less than,
equal to, or greater than (<, =, >). | Number and
Operations in
Bese Ten | 1.NBT.3: Compare two two-digit
numbers based on meanings of the
tens and ones digits, recording the
results of comparisons with the
symbols >, =, and =. | Yes | | | Write and solve number sentences
from problem situation; that express
relationships involving addition and
subtraction. | | subtraction. (Cluster Stotement) 1.0A.1: Use additions end unbraction within 20 to solve word problems involving riteration of odding to, inhantene of odding to, inhantene together, taking spart, and comparing, with unbrowns in all positions, e.g., by using objects, drawings, and equitones with a symbol for the unknown number to required an experience of the problem.* | Tes | "Refers to table with common
addition and subtraction situs
(e.g., Add to and Take from w
result unknown, change suskin
start unknown, etc.). | | | Represent equivalent flours of the same
number through the use of physical
models, thapman, and number expressions
(to 20) (e.g., 8 may be represented as 4 +
4, 5 + 3, 2 + 2 + 2 + 2, 10 - 2, 11 - 3). | Operations and
Algebraic
Thinking | symbols: n_i and n_i . I could be a finite or n_i and n_i . I cold R Add and unbarst wirthin 20, descentivisting flusiony for addition and obligation for the contrast of the cold col | | | | 1.2 Understand the meaning of the symbols +, -, =. | Operations and
Algebraic
Thinking | 1.0A.7: Understand the meaning
of the equal tigst, and determine if | Yes | | | | | | the season state of the season state of the season | | | \vdash | Create problem situations that might
lead to given number sentences involving
addition and subtraction. | | equation: involving addition and
subtraction are true or false. | No | | | | | | and creating equivalent but easier
or known runn (e.g., adding 6 = 7
by creating the known equivalent 6
= 6 + 1 = 12 = 1 = 15) | | | Strand
Measurement and
Geometry
1.0 Measurement | CA Math Standard | | | | | | | 1.4 Count and group object in ones and
tens (e.g., three groups of 10 and 4 equals
34, as 30 = 4). | Number and
Operations in
Base Ten | 1.NBT 2: Understand that the two
digits of a two-digit nazober
represent amounts of tens and
ones. Understand the following as | Yes | | 1.0 Mescurement
and Geometry | 1.0 Students use direct comparison and
nonstandard units to describe the
measurements of objects. | Measurement
and Data | 1 MD: Measure length: indirectly
and by iterating length units.
(Chater Statement) | Yes | | | Strand | CA Math Standard | Domnia | one. Understand the following as
special cases:
Common Core Standard (CCS)
a. 10 can be
thought of as a
bundle of ten ones-called a | Alignment | Comments in reference to CCS | | 1.1 Compare the length, weight,
and volume of two or more
objects by using direct
comparison or a nonstandard unit. | Measurement
and Data | I.MD.1: Order three objects by
length, compare the lengths of two
objects indirectly by using a third
about | Partial | SMD 2: Measure and estimate
liquid volumes and masses of
objects using standard units of
prains (g), kilograms (kg), and
laters (l).* Add, subtract, | | | | | 1 70 - 1 - 1 - 10 | | | Strand | CA Math Standard | Domain | Common Core Standard (CCS) | Alignment | Comment: in reference to C | | | | | o. In missions (min. 1 to 1) to 19 are consequent of a hea and one, two, there, flour, flour, flour, its, sayus, eight, or nine ones. e. The numbers 10, 20, 30, 46, 55, 60, 70, 52, 90 ander to one, two, three, flour, flour, its, system, eight, or nine feath (and 0 ones). | | | | | | Common Core Standard (CCS) LMD: Expects the longh of an object as which assales of longh teat, which is a subject as a which saulter of longh teat, by loying multiple copies of a sharise object the longth must used to mel, understand that the longth mustoment of an object is the number of same-size length more of the saulter of longth must be contained for the contained of the saulter of the longth must be object being monatered in granted by a whole number of longth usets write no page or more days. | | lines (0, * Add, subract,
Comment: in reference to C
multiply, or devide to tolve on
they would problems involving
matters or volumes that we gis
in the came units, e.g., by win
drawings (such as a beaker wit
measurement scale) to represe
the problem.* | | | 1.5 Identify and know the value of com: | | six, seven, eight, or nine tens
(and 0 ones). | No | 2.34D & Solve word problems | | | | usets that span it with no gaps or
overlaps. Limit to consext where
the object being measured is
assented by a whole number of | | *Excludes compound units on
and finding the prometric vols
of a container | | | and slave different continuations of coins
that equal the same value. | | | | diner, nickels, and pennier, tring
dollar tigns and cents tign
appropriately | | | | length units with no gaps or
averlage. | | Excludes unshiplicative
comparison problems (problem
involving melions of "times as
much", see glossary table deal
with common multiplication. | | 2.0 Number Sence | | | | Yes | CCS does not introduce money in
first grade. The second grade
standard does expect knowledge
of value and then computation. | _ | 1.2 Tell time to the nearest half hour and
relate time to events (e.g., before lafter, | Measurement
and Data | 1 MD.3: Tell and write time in
hours and half-hours using analog | Yes | division situations.) | | 2.0 Number Sense | 2.0 Students demonstrate the meaning of
addition and subtraction and use these
operations to solve problems. | Operations and
Algebraic
Thinking | problems involving addition and
inhtraction. (Cluster Statement) | Tes
Pumal | | 2.0 Measurement
and Geometry | therterlonger). 2.0 Students identify common prometric figures, classify them by common | Geometry | and digital clocks. 1. G. Reason with shapes and their attributes. (Cluster Statement). | Yes | | | | 2.0 Students demonstrate the meaning of
addition and subtraction and use these
operations to solve problems.
2.1 Know the addition facts (sums to 30)
and the convergenting subtraction facts
and committee to meaning. | Operation: and
Algebraic
Thinking | I.O.A. Expenses and solve problems involving addition and subtraction. (Charles Statement) 1.O.A.6: Add and subtract within 20, desecontraing flowers within 10. Use transgers such as counting our making time, e.g., 8 of 6 5 * 2 + 4 = 10 - 4 = 14), decomposing 8 | Partial | 2 OA 2: Finently add and
subtract within 20 using mental
strategies.* By and of Grade 2.
know from memory all sums of
two one-digit numbers. | | secule must be events (e.g., betters often,
hetersellongers) common general
2.0 Students identify common general
figures, classify them by common
attributes, and describe their relative
positions or that houstons in upon.
2.1 Henrify, describe, and
compare thougher, rectangles,
opurars, and curcles, including the
floors of three-classifications. | | | No | E.G.4: Analyze and compare
two- and three-dimensional
shapes, in different sizes and | | | | | = 10 = 4 = 14), decomposing a mmber landing to a ten (a.g., 13 = 4 = 13 - 3 - 1 = 10 - 1 = 9); using the relationship between addition and substaction (a.g., knowing that 5 + 4 = 12, one know 12 - 8 = 4); and creating equivalent but easier or known stans (a.g., adding 6 = 7 | | | | sojects. | 2011 | | | B. G.* Analyze and compute
rave—and three-dimensional
shapes, in diffuser time and
orientations, using informal
language to describe their
smallestnes, differences, parti-
(e.g., number of sides and
vertices? "conners") and other
stribitures (e.g. having sides o
equal length). | | Strand | CA Math Standard | Domain | | Alignment | Comments in reference to CCS | | 2.2 Classify familiar plane and solid
objects by common attributes, such as
color, position, shape, size, roundness, or | Geometry | Distinguish between
defining attributes (e.g., triangles
are closed and three-sided) versus | Yes | 10000000 | | | 2.2 Use the inverse relationship between
addition and subtraction to solve problems. | Operations and
Abrelease | Common Core Standard (CCS)
by creating the known equivalent
6+6+1=12+1=13).
1.OA.4: Understand subtraction as
an unknown-added problem. | Yes | | Strand | 2.2 Classify familiar plane and solid
objects by consume attributes, such as
color, positions, shape, size, resundants, or
number of contars, and explains which
attributes are being used for classification.
CA Math Standard | Domain | 1.G.1: Dottinguish between defining attributes (e.g., triangles are closed and three-tided) versus men-defailing attributes (e.g., color, orientation, overall intel), build and Common Core Steadard (CCS) draw shapes to possess defining | Alignment | Comments in reference to C | | | 2.3 Identify one more than, one less than,
10 more than, and 10 less than a given | Algebraic
Thinking
Number and | LNBT 5: Given a two-digit | Yes | | | 2.5 Give and follow directions about | | attributes. | No | | | | 2.4 Count by 21, 51, and 101 to 100. | Operations in
Base Ten
Counting and
Cardinality | INST 5: Given a two-digit massless, mentally find 10 more or 10 less that the number, without having to count: explain the resonance road. 1.0A.5: Relate counting to address and nobrascines (e.g., by counting on 2 to add 2). | Partial | K.CC.1: Count to 100 by ones | | 2.4 Arrange and describe objects in spare
by promining, position, and direction (e.g.,
near, fix, below, above, up, down, behind,
in front of, next to, left or right of). | | | No | K.G.1: Describe objects in the
environment using somes of
shapes and describe the relative
positions of these objects usin
terms ruch as above, below,
beside, in from of, belond, and | | | | Operations and
Algebraic
Thinking | counting on 2 to add 2). | | 2.NBT-2: Count within 1000; by
51, 101, and 1001. | Strand
Statistics Data | CA Math Standard | | | | bezide, in front of behind, and
next to | | | 2.5 Show the menting of addition (putting
together, increasing) and subtraction
(biking away, comparing, finding the
difference). | Linking | | No | K.OA: (Charter Statement)
Understand addition as puring
together and adding to, and
understand subtraction as taking | Analysis, and
Probability | 3040/07/1 2050/01/2/10/2/1 | | | Yes | | | | | | | | together and adding to, and
understand subtraction as taking
apart and taking from | Strand Statistics, Data Analysis, and Probability 1.0 Statistics, Data Analysis, and Puolutelity | 1.0 Students organize, represent, and
compare data by category on sample
graphs and charts. 1.1 Sort objects and data by common. | Measurement
and Data | 1 MD: Represent and interpret
data (Claster Statement). | Yes
No | E34D.3: Classify objects sate | | | 2.6 Solve addition and subtraction
problems with one- and two-digit numbers
(e.g., 5 = 58 =). | Number and
Operations in
Base Ten | 1.NBT.4. Add within 100,
including adding a two-digit
mumber, and adding a two-digit
number and a multiple of 10, using | Yes | | | attributes and describe the categories. | | | | gives categories; count the
numbers of objects in each
category and nort the categorie
by count. | | | | | LINETA Add within 100, michiga should be a two-dige mambe, and adding a two-dige mambe, and antiple of 10, miniple mini | | | | Expressed and compare data (e.g.,
largest, smallest, most often, least often)
by using potures, but graphs, tally charts,
and potuse graphs. | Measurement
and Data | 13/ID-4: Organize, represent, and
interpret data with up to three
congoons; salt and answer
questions about the text insulter of
data points, how many in each
company, and how many more or
less are in one category than in
another. | Yes | | | | CA Math Standard | Domain | | | | 2.0 Statistics, Data
Analysis, and
Probability | Students sort objects and create and
describe potterns by manbers, shapes,
sizes, shythms, or colors. | | | No | CCS mentions patterns in the
Mathematical Practice Standa
"mathematically posticient
students look closely to discen | | Strand | UN ALRES PORMULES | Domine | Common Core Standard (CCS) 1/88T.6. Sphracet makingles of 10 m the range 10-90 from maintake of 10 in the range
10-90 (positive or zero difference), using concrete models or deservings and shringles operations, raide of the substructure operations, raide of the substructure, selated the structure ye to a visite method and explain the reasoning weed. | Augument | Comments in reference to CCS | Strand | CA Math Standard 2.1 Describe, entend, and explain mays to get to a next element in sample squaring pattern (e.g., thythasis, numeric, color, and thape). | Domain | Common Core Standard (CCS) | Alignment
No | nothers or structure." Comments in reference to C | | | | | operation, and/or the relationship
between addition and subtraction;
related the strategy to a written | | | Strand
Mathematical | CA Math Standard | | | | | | | 2.7 Find the rum of three one-digit | Operations and | method and explain the reasoning
used.
1 OA 2: Solve word problems that | Yes | | Mathematical Restoring 1.0 Mathematical Restoring | Students make decisions about how to
set up a posblem. | Mathematical
Practice
Standards | 1.MP.1: Make sense of problems
and persevere in solving them. | Yes | | | | numbers. | Operations and
Algebraic
Thinking | used. 1 OA.2: Solve word problems that call for addition of finese whole numbers whose runs is less than or equal to 20, e.g., by using objects, drawnings, and equations with a symbol for the unknown number to | | | | 1.1 Determine the approach, materials, and
strategies to be used. | Notheratical
Practice | 1.MP.5: Use appropriate tools strategically. | Yes | | | | | | sebseners are broosen. | | | | 1.2 Use tools, such as manipulatives or
sketches, to model problems. | Mediemetical
Practice
Standards | 1.MP.4 Model with unthematics. 1.MP.5: Use appropriate tools | Yes | | | | | | IOA 5: Determine the unknown whole number in an addition or subtraction equation relating to three whole numbers. | | | 2.0 Mathematical
Restoring | Students solve problems and justify their reasoning | Mathematical
Practice
Standards | 1.MP.3: Construct viable
arguments and critique the
reasoning of others. 1.MP.4: Model with mathematics. | Yes | | | 3.0 Number Sense | Students use estimation strategies in
computation and problem solving that
involve numbers that use the ones, tens,
and hundreds places. | | | No | CCS does not mention estimation
of quantities except in the
Mathematical Practice standards. | | 2.1 Explain the seasoning used and justify
the procedures selected. | Mathematical
Practice
Standards
Mathematical
Practice
Standards | | Yes | | | | and hundreds places. | | | | CCS dows not mention extraction
of quantities except in the
Mathematical Practice standards.
Estimation is then described as
"make conjectures about the form
and meaning of the solution and
detect possible errors by | | 2.2 Make precise calculations and check | Mathematical
Practice
Standards | 1 MP.6: Arread to precision. | Yes | | | | | | | | other mathematical knowledge." | 3.0 Mathematical
Resconing | the valuably of the recult: from the context
of the problem. 3.0 Students note connections between one
problem and mother. | Mediemetrical
Practice
Standards | 1 MP.7. Look for and make use of
structure. | Yes | | | - | 3.1 Make reasonable estimates
when comparing larger or smaller | | | No | CCS does not mention estimation
of quantities except in the
Mathematical Practice standards. | 1 | | -comment) | 1 MP 8: Look for and express
regularity in repeated reasoning. | | | | | when comparing larger or smaller
numbers. | | | | of quantities except in the
first and provides standards.
Estimation is then described as
"make conjectures about the form
and meaning of the solution and | | | | пералиту и перенен петения. | | | #### First Grade Math Standards #### Standards Removed in Red, Partially #### Removed in Yellow | Strand
Strand | sis of Canjornia Mainen | tatics stan | dards to Common Co | ore stand | ards-Grade 1 | | | | | | | |-------------------------------------|--|---|--|---------------
--|---|--|--|--|-------------------------
--| | | CA Math Standard | Domain | Common Core Standard (CCS) | Aligament | Comments in reference to CCS | Strand | CA Math Standard | Domain | Common Core Standard (CCS) | Alignment | Comments in reference to CCS | | Number Seate
1.0 Number Seate | CA Math Steadard
1.0 Student: understand and use numbers | Number and | LNBT: Extend the counting | Yes | | | | | Common Core Standard (CCS) | | detect possible errors by
strategically using estimation and
other mathematical knowledge." | | | up to 100. | Operations in
Base Ten | sequence. (Cluster Statement) | | | Strand
Algebra and | CA Math Standard | | | | | | | 1.1 Count, read, and write whole mumbers
to 100. | | 1.NBT.1: Count to 120, starting at
any number less than 120. In this
range, read and write numerals and | Yes | | Algebra and
Function
1.0 Algebra and | 1.0 Students use mapping septences with | - | 1.0A: Represent and solve | Yes | | | | | Operations in
Base Ten | range, read and write numerals and
represent a number of objects with | | | Punctions | operational symbols and expressions to
solve problems. | | subtraction. (Cluster Statement) | | | | - | 1.2 Compare and order whole sumber to | Number and | | Yes | | | 1.1 Write and solve number sentences | | | Yes | *Refers to table with consume | | | 1.2 Compare and order whole numbers to 100 by using the symbols for less than, equal to, or greater than (<, =, >). | Operations in
Base Ten | 1 NBT.3 Compare two two-digit
numbers based on meanings of the
tens and ones digits, recording the
results of comparisons with the
symbols >, n, and <. | | | | from problem situations that express
relationships involving addition and
subtraction. | | 1.OA.1: Use addition and
subtraction within 20 to solve word
problems modeling situations of
adding to, taking from puring,
together, taking apart, and
comparing, with unknowns in all. | | addition and subspection situations
(e.g., Add to and Take from with
result unknown, change unknown,
start unknown, etc.). | | | | | results of comparisons with the rymbols >, =, and <. | | | | January Company | | together, taking spart, and | | start unknown, etc.). | | | Represent equivalent forms of the same
number through the use of physical
models, diagrams, and number expressions. | Operations and | OA 6: Add and subtract within St., demonstrating finency for addrson and subtraction within 10. | Yes | | | | | positions, e.g., by using objects,
drawings, and equations with a
symbol for the unknown number to | | | | | number through the use of physical
models, diagrams, and number expressions | Operations and
Algebraic
Thinking | 20, demonstrating finency for
addition and subtraction within 10. | | | | | | recovered the problem.* | | | | | (to 20) (e.g., 8 may be represented as 4 +
4, 5 + 3, 2 + 2 + 2 + 2, 10 - 2, 11 - 3). | | Use strategies such as counting on:
making ten (e.g., 8 + 6 = 8 + 2 + 4
= 10 + 4 = 14), decomposing a | | | _ | 1.2 Understand the meaning of the | Operations and | symbol for the unknown number to
represent the problem.* 1.0A.7: Understand the meaning | Yes | | | ĺ | | | = 10 = 4 = 14); decomposing a
number leading to a ten (e.g., 15 = | | | | symmets +, -, =. | Algebraic
Thinking | equations involving addition and | | | | | | | making Sm. (e.g., 8 $^{\circ}$ = 6 $^{\circ}$ = 2 $^{\circ}$ + 4 $^{\circ}$ = 10 $^{\circ}$ = 4 $^{\circ}$ 10, 4 $^{\circ}$ 10, 4 decomposing a number isolating to a ten (e.g., 15 $^{\circ}$ = 10 $^{\circ}$ 1 = 9), using the relationship between addition and subtraction (e.g., knowing that 8 $^{\circ}$ 4 = 12, one know 12 $^{\circ}$ 5 = 6); and creating squariosies that easier or known vasus (e.g., siding 6 $^{\circ}$ 7 by creating that known equivalent 6 $^{\circ}$ 6 = 11 $^{\circ}$ 1 = 12 $^{\circ}$ 1 = 15). | | | | 2.3 Create problem situations that might | | subtraction are true or false. | No | | | 1 | | | and subtraction (e.g., knowing that $8 + 4 = 12$, one know $12 - 8 = 4$); | | | | Create problem situations that might
lead to given number sentences involving
addition and subtraction. | | | 300 | | | | | | and creating equivalent but easier
or known runn (e.g., adding 6 = 7 | | | Strand | | _ | | | | | | | | by creating the known equivalent 6 $= 6 + 1 = 12 + 1 = 15$). | | | Measurement and
Geometry | CA Math Standard | | | | | | | 1.4 Count and group object in ones and
tens (e.g., three groups of 10 and 4 equals
34, as 30 = 4). | Number and
Operations in | 1.NBT 2: Understand that the two
digits of a two-digit namber
represent amounts of tens and
ones. Understand the following as | Yes | | Measurement and
Geometry
1.0 Measurement
and Geometry | 1.0 Students are direct comparison and
nonstandard units to describe the | Measurement
and Data | 1 MD: Measure lengths indirectly
and by iterating length units.
(Cluster Statement) | Yes | | | | 34, or 30 = 4). | Operations in
Base Ten | represent amounts of tens and
ones. Understand the following as | | | - | measurements of objects. | Management | (Cluster Statement) | Dunisl | SMD 2: Maximum and entirestr | | Strand | CA Math Standard | Domain | | Aliment | Comments in reference to CCS | | 1.1 Compare the length, weight,
and volume of two or more
obsects by mine direct | Measurement
and Data | 1 MD 1: Order three objects by
length; compare the lengths of two
objects indirectly by using a third | rana | SMD 2: Measure and estimate
liquid volumes and masses of
objects using standard units of | | Strand | CO ALMS SCHERE | Domin | Common Core Standard (CCS) a. 10 can be thought of as a builde of ten ones-called a | .togament | Crements in renerates to CCS | 1 | objects by using direct comparison or a nonstandard unit. | | objects indirectly by using a third object. | | grams (g), kilograms (kg), and | | | | | "ten". h The resolver from 11 to 19 | | | Strand | CA Math Standard | Domnin | Common Core Standard (CCS) | Alignment | lines (0). * Add, subract,
Comment in reference to CCS
andipply, or devide to only one-
tep word problems involving
masses or volumes that are given
in the same units, e.g., by using
drawings (such as a beaker with a
measurement code) to represent
the problems.* | | ĺ | | | "ten". b. The trambers from 11 to 19 are composed of a ten and one, two, three, four, five, tix, seven, eight, or time | | | | | | object as a whole number of length | | thep word problems involving | | 1 | | | tix, seven, eight, or nine
ones. | | | | | | a shorter object (the length unit) | | in the came unit, e.g., by using | | 1 | | | e. The numbers 10, 20, 30, 40,
50, 60, 70, 80, 90 sefer to | | | | | | length measurement of an object is | | measurement scale) to represent | | | | | one, two, three, four, five,
six, seven, eight, or nine tens
(and 0 ones). | | | | | | units that span it with no gaps or | | *Exclude command units or | | | 1.5 Identify and know the value of own- | | (and 0 ones). | No | 2 MD 8: Solve word problems | | | | the object being measured is | | *Excludes compound units cm ²
and finding the geometric volume
of a container | | | 1.5 Identify and know the value of coms
and show different combinations of coms
that equal the same value. | | | 100 | 2MD 8: Solve word problems
involving dollar bills, quarters,
dames, nickels, and pennies, using
dollar signs and cents sign | | | | Common Core Standard (CCS) LMD - Express the longs of ra-
object as whole marker of the object as the
object as whole marker of the object as whole
short as whole marker of the object as
and to and, understand that the
and to and, understand that the
and to and, understand that the
the marker of tames—time length
mark that spon it with no gops or
overlage. Limit for content where
the object
being monemed it;
guessed for a whole smaller of
guessed for a whole smaller of
ever lags. | | a Partialar assistations on | | | and the same same | | | | dollar signs and cents sign | | | | - mayb | | comparison publican (problems | | | | | | | CCS does not be be be a second | | | | | | comparison problems (problems
involving notions of "times as
much"; see glossary table dealing
with common unsimplication and | | | | | | | first grade. The second grade
standard does expect knowledge
of value and then computation. | | 1.1 Tall tage to the necessit holds | Management | LMD 5. Tell and water for | Yes | division situations.) | | 2.0 Number Sense | 2.0 Students demonstrate the marrows of | Operations and | 1.OA: Represent and solve | Yes | of value and then computation. | | 1.2 Tell time to the nearest half hour and
relate time to events (e.g., before after,
shorter learner) | Measurement
and Data | 1 MD.3: Tell and write time in
hours and half-hours using analog
and distributions. | 1550 | | | | 2.0 Students demonstrate the meaning of
addrson and subtraction and use these
operations to solve problems.
2.1 Know the addrson facts (sums to 20)
and the converponding subtraction facts
and committee to meaning. | Algebraic
Thinking | 1.OA: Superiers and some
problems: survolving addition and
inheraction. (Cluster Stotement)
1.OA: Add and subtract within
20, descentiving finency for
addition and subtraction within 10.
Use strategies such as counting on | 0000 | | 2.0 Measurement
and Geometry | shorter longer). 2.0 Students identify common prometric figures, classify them by common attributes, and describe their relative. | Geometry | and digital clocks. 1. G: Reason with shapes and their attributes. (Cluster Statement). | Yes | | | | 2.1 Know the addition facts (name to 20) | Operations and | 1.OA.6: Add and subtract within 20. descriptions from the form | Partial | 2.0A.2: Florently add and | - Ownamy | attributes, and describe their relative | | Committee (Committee or Committee) | | | | | and commit them to memory. | Algebraic
Thinking | addition and subtraction within 10. | | 2004.2: Frostmy and not
subtract within 20 using mental
strategies. * By and of Grade 2,
know from memory all runs of
two one-digit numbers. | | athiotete, and describe their relative
position or their location in space.
2.1 Identify, describe, and
compute thought, sectingles,
opures, and curies, including the
faces of three-dimensional | | | No | K.G.4: Analyze and compare | | | | | making ten (a.g., 8 + 6 = 8 + 2 + 4 | | two one-digit manbers. | | squares, and circles, including the | | | | shapes, in different sizes and | | | | | addrawn and subtraction within 10.
Use strategies such as counting on:
making ten (e.g., 8 = 6 = 5 = 2 + 4
= 10 = 4 = 14); decomposing a
number leading to a ten (e.g., 13 =
4 = 13 = 3 - 1 = 10 - 1 = 9); using
the relationship between addition | | | | objects. | | | | E.G.4: Analyze and compare
two- and these-dimensional
shapes, in diffused rines and
ensemblent, using informal
language to describe their
simulations, differences, parts
(e.g., number of sides and
vertices? Commerc?) and other
attributes (e.g., having sides of
sexual learnish | | | | | the relationship between addition
and subtraction (e.g. knowing the | | | | | | | | (e.g., number of sides and | | | | | and subtraction (e.g., knowing that
5+4=12, one know 12-5=4);
and creating equivalent but easier
or known sums (e.g., adding 6 = 7 | | | | | | | | rertices comers; and other
situations (e.g., having sides of
equal length). | | | | | or known sums (e.g., adding 6 = 7 | | | | 2.2 Classify finalize plane and solid
objects by common attributes, such as
color, position, shape, size, rounders, or
number of corners, and explain which
attributes are being used for classification.
CA Math Standard | Geometry | 1.G.1: Distinguish between
defining attributes (e.g., triangles
are closed and three-sided) versus
nee-defining attributes (e.g., color,
control of the color, build and color, build and color,
and color, and color, build | Yes | | | Strand | CA Math Standard | Domain | Common Core Standard (CCS)
by creating the known equivalent
6 + 6 + 1 = 12 + 1 = 13).
1 OA 4: Understand subtraction as
an unknown-addend problem. | Alignment | Comments in reference to CCS | | color, pesition, shape, size, roundness, or | | are closed and three-sided) versus | | | | | 2.2 Use the inverse relationship between | Operations and | 6+6+1=12+1=13). | Yes | | Strand | attributes are being used for classification. | Domain | | Aller | Comment is reference to CCC | | | addition and subtraction to solve problems. | Operations and
Algebraic
Thinking
Number and | an unknown-addend problem. | 165 | | recond | | positis | draw shapes to possess defining | Augusteut | Comments in reference to CCS | | | 2.3 Identify one more than, one less than,
10 more than, and 10 less than a given | | LNBT 5: Goven a two-digit
massive, mentally find 10 more or
10 less that the number, without
having to count: explain the
reasoning used. | Yes | | | 2.5 Gree and follow directions about | | and the same of th | No | | | | 10 more than, and 10 less than a given
number. | Operations in
Base Ten | 10 less that the number, without | | | | location. 2.4 Arrange and describe objects in spare
by proximity, position, and direction (e.g.,
nam, fix, below, above, up, down, behind,
in front of, next to, left or right of). | | | No | K.G.1: Describe objects in the
environment using names of
shapes and describe the relative
positions of these objects using
terms read as above, below,
beside, in front of, below, | | | 2.4 Count by 2s. 5s. and 10s to 100 | | reasoning soed. | Portol | K CC 1: Count to 100 by one: | | near, fix, below, above, up, down, behind,
in front of, next to, left or right of | | | | shapes and describe the relative | | | 2.4 Count by 2s, 5s, and 10s to 100. | Counting and
Cordinality | 1.OA.5: Relate counting to
addrson and subtraction (e.g., by
counting on 2 to add 2). | Partial | and by tens. | | | | | | berns ruch as above, below,
beside, in front of behind, and | | | | Operations and | counting on 2 to add 2). | | 2.NBT 2: Count within 1000; by
51, 101, and 1001. | Strand | | | | | nest to. | | | | Operations and
Algebraic
Thinking | | | | Statistics, Data | CA Math Standard | | | | | | | 2.5 Show the meaning of addition (puring
together, increasing) and subtraction
(taking away, comparing, finding the
different parties. | | | No | K.OA: (Cluster Statement)
Understand addition as putting | Statistics, Data
Analysis, and
Probability
1.0 Statistics, Data | | Mann | 1MD Persons - 1 | Ves | | | | (taking away, comparing, finding the
difference). | | | | Understand addition as putting
together and adding to, and
understand subtraction as taking
apart and taking from. | 1.0 Statistics, Data
Analysis, and
Parbability | Students organize, represent, and
compute data by category on sample
graphs and clasets. | Measurement
and Data | 1.MD: Represent and interpret
data (Charter Statement). | 185 | | | | | | | | apart and taking from | | 1.1 Sort objects and data by common
attributes and describe the categories. | 1 | | | 100 | | | 2.5 Solve addition and subtraction
problems with one-and two-digit numbers
(e.g., 5 = 58 =). | Number and | 1.NBT.4: Add within 100, | | | | | | | No | K.MD.3: Classify objects into | | | A THE OWN AND THE WAY DESIGNATION OF THE OWN AND ADDRESS OF THE OWN AND ADDRESS OF THE OWN AND ADDRESS OF THE OWN TH | | including adding a two-dige. | Yes | | | attributes and describe the extegories. | | | No | KMD3: Classify objects into
given categories, count the
numbers of objects in each | | | (e.g., 5+38=_). | Operations in
Base Ten | including adding a two-digit
number, and adding a two-digit
number and a matterla of 10. | Yes | | | | | | No | KMD.3. Classify objects rate
given categories, count the
numbers of objects in each
category and not the categories
by count. | | | (a.g., 3 = 38 = _). | Operations in
Base Ten | including adding a two-digit
number, and adding a two-digit
number and a multiple of 10, using
concrete models or disvange; and
stretumes based on place and | Yes | | | | | 1MD-4: Organize, represent, and | No
Yes | R.MD.3: Classify objects unto
given categories, count the
numbers of objects in each
category and sort the categories
by count. | | | (Ag.3-35) | Openhan in
Base Ten | including adding a two-digit
number, and adding a two-digit
number and a multiple of 10, using
concrete models or drawing; and
strategies based on place value,
properties of operations, and/or the
relationship between addings.———————————————————————————————————— | Yes | | | | Measurement
and Data | 13MD 4: Organize, represent, and
interpret data with up to three
categories, ask and moves | No
Yes | K.MD.3: Classify objects sate
given categories; count the
numbers of objects in each
category and sort the categories
by count. | | | (e.g., 3 = 35 =). | Operation in
Size Ten | including adding a two-digit
number and a multiple of 10, using
concrete models or drawings and
strategies based on place value,
properties of operations, and/or the
selationship between additions and
subtraction; related the strategy to
a written method and avoiding the | Yes | | | attributes and describe the categories. 1.2 Expressent and compare data (e.g., largest, mattless, most other, sours often) by samp picture, but graphs, tally chart, and picture graphs. | Measurement and Data | 13MD-4: Organize, segment, and
innerpret data with up to
those
categories; sik and anover
questions about the total number of
data points, forw many in each | No
Yes | E.MD.3: Classify objects unto
given categories, count the
number of objects in each
category and nort the categories
by count. | | | (e.g., 3 + 35 =). | Openhous in
Sase Ten | including adding a reve-digit
number, and adding a reve-digit
number and a multiple of 10, using
concrete unsides or durating and
strategies beared on place whose,
properties of operations, and/or the
estatemiship between addings and
subtractions; related the strategy to
a written unstided and explain the
reasoning used. Understand that in
adding two-dupt numbers: one | Yes | | | | Measurement
and Data | 13MD-4: Organize, represent, and interpret data with up to those creapories; that and ancover questions about the total insuber of data pounts, how many in each critiquity, and how many more or less are on one cripenty than in | No
Yes | E.MD.3: Classify objects sate
given categories; count the
numbers of objects in each
cumbers of objects in each
country of objects and out the categories
by count. | | | (e.g., 3 + 35 =). | Openhous in
Sate Ten | including ablancy a two-dept
number, and adapt a two-dept
number and a multiple of 10, using
concrete models or drawings and
trategies based on place values,
properties of operations, malor the
adaptional potentials and
anderaction, relations and
anderaction, relation the
avoiding number of the adaption of
a vertices method and explain the
adding two-depti meabour, one
adds two and two, one and one;
and constitute it is measured. | Yes | | 2.0 Stanistics. Date | 1.3 Enquested and compare data (e.g.,
largest, smallest, most offen, heart offen)
by saing picture, but graph, tally chart,
and picture graph. | Measurement and Data | 13MD 4: Organize, represent, and integrate data with up to face critegories; als and anover questions about the stati number of data possits, here many as soft critique, and how many more or less are in one critegory, and how many more or less are in one critegory than in another. | No
Yes | gives categories, count the
numbers of objects in each
category and nort the categories
by count. | | | (64,3-38). | Operations in
Sane Ten | 1303 A. Add within 100, michology shadows, and adding a two-dept number, and antique at the complex and a strategies of 10, ming concrete models or drawings and strategies thread on place white, mixing the least of pages within the complex of the state of the complex of the state of the complex of the state of the complex of the state | Yes | | 2.0 Statistics, Data
Analysis, and
Probability | 1.3 Empressed and compare data (e.g.,
largest, smallest, most offen, heat offen)
by saing picture, but graph, tally chart,
and picture graph. | Measurement
and Data | 13/ID-8. Organies, represent, and
interpret date with up to these
categories; aid and across
questions about the steal number of
date possits, how easily us each
category, and how many size or
category, and how many size or
another. | No
Yes | gives categories, count the
number of objects in each
category and out the categories
by count. CCS mentions patterns in the | | Strand | (s.g., 3 = 23 =). CA Misth Steadure! | Operations in
State Text | including abiling a two-digit
number, and abiling a two-digit
number and a multiple of 10, using
concrete models or drawings and
intringues brased on place while
reportative of operations, and/or the
properties of operations, and/or the
national control of the second of the
national control of the second of the
reasoning used. Understand that in
adding two-digit numbers, one
adds two and tens, ones and ones;
and consument it is necessary to
compute a ten. | | Community in reference to CCS | 1000000 | 1.3 Expresses and compare data (e.g., laspest, smallest, soort offees, loat offees) by using pictures, but graphs, tally charts, and picture graphs. 2.0 Students sort objects and create and decembe prieters by smallest, shapes, latter, highers, trainer, shapes. | ocenta(Te) | | No
Yes | given categories, count the number of objects in each category and not the categories by count. CCS mentions problems in the Mathematical Proctice Standards Translational Professional Proctices Standards Translational Professional Procession Standards Translational Professional Professional Procession Standards Translational Professional Professional Processional Processional Professional Professional Professional Processional Professional Pr | | Straad | | | including abiling a two-digit
number, and abiling a two-digit
number and a multiple of 10, using
concrete models or drawings and
intringues brased on place while
reportative of operations, and/or the
properties of operations, and/or the
national control of the second of the
national control of the second of the
reasoning used. Understand that in
adding two-digit numbers, one
adds two and tens, ones and ones;
and consument it is necessary to
compute a ten. | | Community in reference to CCS | 20 Stationer, Data
Analysis, and
Pushalalay
Strand | 1.3 Expresses and compare data (e.g., laspest, smallest, soort offees, loat offees) by using pictures, but graphs, tally charts, and picture graphs. 2.0 Students sort objects and create and decembe prieters by smallest, shapes, latter, highers, trainer, shapes. | ocenta(Te) | 13(1):4. Organies, represent, and interpret date with up to these empories; this suit survey and the point, here may not an empories; this suit survey are designed, and the point, here many more decapancy, and how many more denotes on the control of | No Yes No Alignment No | gives categories, count the
number of objects in each
category and out the categories
by count. CCS mentions patterns in the | | Straad | | | uncluding Adding a two-digit uncluding Adding a two-digit unclude and a strategie of 16, uncluding and a strategie of 16, uncluding and a strategie based on glacer value, proportion of operations, and/or the attachment process and adding and uncluding uncluding and uncluding the attachment of the adding two-digits uncluding and design the adding two-digit numbers, one adding two-digit numbers, one adding two-digits uncluding and two made them, and our not and ones, and constrained in its naneauxy to compare a loss. Communic Core Standard (CCS) LNB16. Subsect multiples of 10. uncluding the constrained on the complex of the manufactor of the constrained constrain | | Сепшнит із гебечног за ССЅ | 1000000 | 1.3 Expresses and compare data (e.g., laspest, smallest, soort offees, loat offees) by using pictures, but graphs, tally charts, and picture graphs. 2.0 Students sort objects and create and decembe prieters by smallest, shapes, latter, highers, trainer, shapes. | ocenta(Te) | | Yes No Alignment No | given categories, count the number of objects in each category and not the categories by count. CCS mentions problems in the Mathematical Proctice Standards Translational Professional Proctices Standards Translational Professional Procession Standards Translational Professional Professional Procession Standards Translational Professional Professional Processional Processional Professional Professional Professional Processional Professional Pr | | Straad | | | uncluding Adding a two-digit uncluding Adding a two-digit unclude and a strategie of 16, uncluding and a strategie of 16, uncluding and a strategie based on glacer value, proportion of operations, and/or the attachment process and adding and uncluding uncluding and uncluding the attachment of the adding two-digits uncluding and design the adding two-digit numbers, one adding two-digit numbers, one adding two-digits uncluding and two made them, and our not and ones, and constrained in its naneauxy to compare a loss. Communic Core Standard (CCS) LNB16. Subsect multiples of 10. uncluding the constrained on the complex of the manufactor of the constrained constrain | | Communité la reference to CCS | 1000000 | 1.3 Empressed and compare data (e.g.,
largest, smallest, most offen, heat offen)
by saing picture, but graph, tally chart,
and picture graph. | ocenta(Te) | | Yes Yes No | given categories, count the number of objects in each category and not the categories by count. CCS mentions problems in the Mathematical Proctice Standards Translational Professional Proctices Standards Translational Professional Procession Standards Translational Professional Professional Procession Standards Translational Professional Professional Processional Processional Professional Professional Professional Processional Professional Pr | | Straad | | | uncluding Adding a two-digit uncluding Adding a two-digit unclude and a strategie of 16, uncluding and a strategie of 16, uncluding and a strategie based on glacer value, proportion of operations, and/or the attachment process and adding and uncluding uncluding and uncluding the attachment of the adding two-digits uncluding and design the adding two-digit numbers, one adding two-digit numbers, one adding two-digits uncluding and two made them, and our not and ones, and constrained in its naneauxy to compare a loss. Communic Core Standard (CCS) LNB16. Subsect multiples of 10. uncluding the constrained on the complex of the manufactor of the constrained constrain | | Community in reference to CCS | Straud | 1.2 Expose and compare data in g., last of these, last of these, last of these, last of these control of the co | ocenta(Te) | | Yes No Alignment No | given categories, count the number of objects in each category and not the categories by count. CCS mentions problems in the Mathematical Proctice Standards Translational Professional Proctices Standards Translational Professional Procession Standards Translational
Professional Professional Procession Standards Translational Professional Professional Processional Processional Professional Professional Professional Processional Professional Pr | | Straad | | | michaling adding a two-digit
matching adding a two-digit
unable and a satisface of 1% using
concerts models or drawing; and
concerts models or drawing; and
properties of opporations, make the
addings of the properties of opporations, and/or the
addings of the properties of opporations, and/or the
addings of the properties of the
analysis of the
accommendation of the analysis of the
analysis of the
company as into
100 and to make 100 per control of
100 and the part of the
company as into
100 and the part of the
100 and the part of the
100 per control of
100 of | | Community in reference to CCS | Straud | 12 Exposure and compare dark in g., by various protects, but grades, sally charts, and protects projects, sally charts, and protects projects, sally content protects projects and content protects by contents by unablests, shapes, and describe protects by contents by unablests, shapes, and describe protects by the contents of con | Dozzin | Common Core Standard (CCS) | | given categories, count the number of objects in each category and not the categories by count. CCS mentions problems in the Mathematical Proctice Standards Translational Professional Proctices Standards Translational Professional Procession Standards Translational Professional Professional Procession Standards Translational Professional Professional Processional Processional Professional Professional Professional Processional Professional Pr | | Strand | | Donnin | michaling adding a two-digit
matching adding a two-digit
unable and a satisface of 1% using
concerts models or drawing; and
concerts models or drawing; and
properties of opporations, make the
addings of the properties of opporations, and/or the
addings of the properties of opporations, and/or the
addings of the properties of the
analysis of the
accommendation of the analysis of the
analysis of the
company as into
100 and to make 100 per control of
100 and the part of the
company as into
100 and the part of the
100 and the part of the
100 per control of
100 of | | Comment is reference to CCS. | Strand | 1.2 Expose and compare data in g., last of these, last of these, last of these, last of these control of the co | Dozzin | Common Core Standard (CCS) | Yes Yes Aligament No | given categories, count the number of objects in each category and not the categories by count. CCS mentions problems in the Mathematical Proctice Standards Translational Professional Proctices Standards Translational Professional Procession Standards Translational Professional Professional Procession Standards Translational Professional Professional Processional Processional Professional Professional Professional Processional Professional Pr | | Straud | CA Mitth Mondard | Donnin | methoding adding a two-degin
mathematical and mathematical and mathematical and
mathematical and mathematical and mathematical and
properties of operations, under the appropries of operations, under the analysis of ana | | Communi is reference to CCS | Straud | 12 Segment and compare dark in g., by using picture, but gright, nily chairs, and picture purple, nily chairs, and picture project. 23 Students out objects and create and describe pictures by maders, shapes, and, picture, a container, and, picture, a container, and, picture, a container, and a student picture, pict | Dozzain Mathematical Practice Soundards | Common Cure Standard (CCS) 1.MF1: Make sense of problems and persever in solving them. | | given categories, count the number of objects in each category and not the categories by count. CCS mentions problems in the Mathematical Proctice Standards Translational Professional Proctices Standards Translational Professional Procession Standards Translational Professional Professional Procession Standards Translational Professional Professional Processional Processional Professional Professional Professional Processional Professional Pr | | Stread | CA Mitth Mondard | | methoding adding a two-degin
mathematical and mathematical and mathematical and
mathematical and mathematical and mathematical and
properties of operations, under the appropries of operations, under the analysis of ana | | Communities to CCS | Straud | 13. Experience and compare data to a g, larger manifest man of the six short from the contract of the compare that the contract of the compare that the contract of contra | Dozzain Mathematical Practice Soundards | Continuous Core Standard (ICCS) 1.MP 1: Made were of purblems and personner in solving flees. 1.MP 5: Use appropriate tools storageable. | Yes
Yes | given categories, count the number of objects in each category and not the categories by count. CCS mentions problems in the Mathematical Proctice Standards Translateration professor | | Stread | CA Mitth Mondard | Donnin | mobilities design to we design to we design to we design with a second of the o | | Communit in reference to CCS. | Straud | 13. Experience and compare data to a g, larger manifest man of the six short from the contract of the compare that the contract of the compare that the contract of contra | Domain Mathematical Stration | Custom Cure Standard (CCS) 1.MP 1: Make war of published and parameters in tabling flets. 1.MP 5: Due purpopular tools stategiedly. 1.MP 4: Model with mathematics. | Yes | given categories, count the number of objects in each category and not the categories by count. CCS mentions problems in the Mathematical Proctice Standards Translateration professor | | Strand | CA Mitth Mondard | Donnin | unchange design two-sloging collections and control an | | Community in reference in CCS | Straud | 12 Segment and compare dark in g., by using picture, but gright, nily chairs, and picture purple, nily chairs, and picture project. 23 Students out objects and create and describe pictures by maders, shapes, and, picture, a container, and, picture, a container, and, picture, a container, and a student picture, pict | Dozzain Mathematical Practice Soundards | Common Core Standard (CCS) 1.MP.1. Mide were of problems and personner in subring flam. 1.MP.5. Use agreement both strategically. 1.MP.5. Use agreement and the strategically. 1.MP.5. Use agreement both strategically. | Yes
Yes | given categories, count the number of objects in each category and not the categories by count. CCS mentions problems in the Mathematical Proctice Standards Translateration professor | | Stread | CA Mitth Mondard | Donnin | unchange along two-slage in the slage | | Gamani is reference is CCS. | Strand Strand Mathematical Reasoning 10 Mathematical Reasoning | 13. Experience and compare data to a g, larger manifest man of the six short from the contract of the compare that the contract of the compare that the contract of contra | Donnin Mehamitial Practice Standard Mythemitial Practice Standard Mythemitial Practice Standard Practice Standard Practice | Common Core Standard (CCS) 1.MP.1. Mide were of problems and personner in subring flam. 1.MP.5. Use agreement both strategically. 1.MP.5. Use agreement and the strategically. 1.MP.5. Use agreement both strategically. | Yes
Yes | given categories, count the number of objects in each category and not the categories by count. CCS mentions problems in the Mathematical Proctice Standards Translateration professor | | | CAMed Steadard CAMed Steadard 2.7 Fact the sum of time one-digit members. | Donnin | unchange design two-sloging collections and control an | Alignment Yes | | Strand Strand Mathematical Resistance 10 Mathematical Resistance | 13. Experience and compare data to a g, larger seminode, used offices, larger from linear controller, larger flows, flows | Donnin Mehamitid Mehamitid Stallardi Mehamitid Partico Stallardi Mehamitid Protico Stallardi Mehamitid Stallardi Mehamitid Stallardi Mehamitid Stallardi Mehamitid | Common Core Standard (CCS) 13891 Make sense of prolimes and provinces in solving films 13893 The appropriate tools transported to the property of propert | Yes Yes Yes Yes | given categories, count the number of objects in each category and not the categories by count. CCS mentions problems in the Mathematical Proctice Standards Translateration professor | | | CA Medi Standard 2.1 Fact the runs of form one-digit matrice. 3.3 Standard our estimation of region as | Donnin | unchange along two-slage in the slage | | CC5 dars not manten estimation of quantities except in the | Strand Strand Mathematical Reasoning 10 Mathematical Reasoning | 13. Egyption and compare data to g, larger, makes used of the p, larger, beautiful to the contraction of the p, larger from | Mathematical Practice Studies of Pract | Common Core Standard (CCS) 1.MP.1. Mide were of problems and personner in subring flam. 1.MP.5. Use agreement both strategically. 1.MP.5. Use agreement and the strategically. 1.MP.5. Use agreement both strategically. | Yes
Yes
Yes | given categories, count the number of objects in each category and not the categories by count. CCS mentions problems in the Mathematical Proctice Standards Translateration professor | | | CA Mitth Mondard | Donnin | unchange along two-slage in the slage | Alignment Yes | CC5 dars not manten estimation of quantities except in the | Strand Strand Mathematical Reasoning 10 Mathematical Reasoning | 13. Experience and compare data to a given before the compare of t | Donnin Mehamatical Practice Standards Mathematical Practice | Common Cere Standard (CCS) 1307.1 Males were d'publisses and processes in alwhys flows. 1307.2 The prospective the control of | Yes Yes Yes Yes | given categories, count the number of objects in each category and not the categories by count. CCS mentions problems in the Mathematical Proctice Standards
Translateration professor | | | CA Medi Standard 2.1 Fact the runs of form one-digit matrice. 3.3 Standard our estimation of region as | Donnin | unchange along two-slage in the slage | Alignment Yes | CC5 dars not manten estimation of quantities except in the | Strand Strand Mathematical Reasoning 10 Mathematical Reasoning | 13. Experience and compare data to Eq. largest controller, more offers, how others, have has | Donnin Mehamatical Practice Standards Mathematical Practice | Common Core Standard (CCS) 13891 Make sense of prolimes and provinces in solving films 13893 The appropriate tools transported to the property of propert | Yes Yes Yes Yes | given categories, count the number of objects in each category and not the categories by count. CCS mentions problems in the Mathematical Proctice Standards Translateration professor | | | CA Medi Standard 2.1 Fact the runs of form one-digit matrice. 3.3 Standard our estimation of region as | Donnin | unchange along two-slage in the slage | Alignment Yes | CCV have not mention orientation of quantities enough as fine Medicantented Province tradeled in Medicantented Province tradeled in Medicantented Province tradeled in Medicantented Province tradeled in Medicantente and Province tradeled in Medicantente and Medi | Strand Strand Mathematical Encountry 10 Methematical Rancenng 20 Methematical Rancenng | 13. Experience and compare data to a given before to a given and compare data to a given any attention, these datasets, the support of the compared to com | Domain Methometical Straight of Straight of Straight of Particle Straight of Particle Straight of Str | Common Cere Standard (CCS) 1307.1 Males were d'publisses and processes in alwhys flows. 1307.2 The prospective the control of | Yes Yes Yes Yes | given categories, count the number of objects in each category and not the categories by count. CCS mentions problems in the Mathematical Proctice Standards Translateration professor | | | CA Medi Standard 23 Food for ross of flow one-dige number. 3.3 Students on estimation compare to environmental for ross ros | Donnin | unchange along two-slage in the slage | Alignment Yes | CCS date set mention estimation of quantities enterpt in the acceptance of the control co | Strand Strand Mathematical Reasoning 10 Mathematical Reasoning | 13. Experience and compare data to Eq. largest controller, more offers, how others, have has | Donnin Mehamatical Practice Standards Mathematical Practice | Common Cere Nanderl (CCS) 13(7) Male were of prilitions and processes in subseq files 14(7) Softe were of prilitions and processes in subseq files 14(7) Softe propries both shamperilly 13(7) Softe propries 13(7) Admit of procious 13(7) Admit of procious 13(7) Admit of procious 13(7) Softe files and male use of shamperilly | Yes Yes Yes Yes Yes Yes | given categories, count the number of objects in each category and not the categories by count. CCS mentions problems in the Mathematical Proctice Standards Translateration professor | | | CA Medi Standard 23 Food for ross of flow one-dige number. 3.3 Students on estimation compare to environmental for ross ros | Donnin | unchange along two-slage in the slage | Alignment Yes | CCS date set mention estimation of quantities enterpt in the acceptance of the control co | Strand Strand Mathematical Encountry 10 Methematical Rancenng 20 Methematical Rancenng | 13. Experience and compare data to a given before to a given and compare data to a given any attention, these datasets, the support of the compared to com | Domain Methometical Straight of Straight of Straight of Particle Straight of Particle Straight of Str | Common Cere Vasadorá ICCS) 13/21 Males were of prilities and processor in subseq files. 13/22 See aprepares with shangarding. 13/24 See aprepares with shangarding. 13/25 See aprepares with shangarding. 13/25 See aprepares with shangarding. 13/25 See aprepares with shangarding see and | Yes Yes Yes Yes Yes Yes | given categories, count the number of objects in each category and not the categories by count. CCS mentions problems in the Mathematical Proctice Standards Translateration professor | | Stevand Stevand 3.0 Nambus Stevan | CA Medi Standard 2.1 Fact the runs of form one-digit matrice. 3.3 Standard our estimation of region as | Donnin | unchange along two-slage in the slage | Alignment Yes | CCV have not mention orientation of quantities enough as fine Medicantented Province tradeled in Medicantented Province tradeled in Medicantented Province tradeled in Medicantented Province tradeled in Medicantente and Province tradeled in Medicantente and Medi | Strand Strand Mathematical Encountry 10 Methematical Rancenng 20 Methematical Rancenng | 13. Experience and compare data to a given before to a given and compare data to a given any attention, these datasets, the support of the compared to com | Domain Methometical Straight of Straight of Straight of Particle Straight of Particle Straight of Str | Common Cere Nanderl (CCS) 13(7) Male were of prilitions and processes in subseq files 14(7) Softe were of prilitions and processes in subseq files 14(7) Softe propries both shamperilly 13(7) Softe propries 13(7) Admit of procious 13(7) Admit of procious 13(7) Admit of procious 13(7) Softe files and male use of shamperilly | Yes Yes Yes Yes Yes Yes | given categories, count the number of objects in each category and not the categories by count. CCS mentions problems in the Mathematical Proctice Standards Translateration professor | | | sis of California Mathem | | 10 \ | N | ands Grade 1 | | | | | | | |--|---|--|--|-----------|---|--|---|---|--|------------
--| | | SIS OI California Mathem
CAMsth Standard | | Common Core Standard (CCS) | | | Strand | CA Math Standard | Domain | Common Coay Secretaria (Cara | Alier | Comment is | | Strand
Strand
Number Sense
1.0 Number Sense | CA Math Standard | | | | Commande in CCS | Strand | CASIMI Studied | Donnes | Common Core Standard (CCS) | Alignment | strategically using estimation and | | 1.0 Number Sense | 1.0 Student: understand and use numbers
up to 100. | Number and
Operations in
Base Ten
Number and | 1 NBT: Extend the counting
sequence. (Cluster Statement) | Yes | | Strand | CA Math Standard | | | | other nurhematical knowledge." | | | 1.1 Count, read, and write whole manbers
to 100. | Number and
Operations in
Base Ten | 1NBT.1: Count to 120, starting at
any number less than 120. In this
range, read and write numerals and
represent a number of objects with | Yes | | Strand
Algebra and
Function
1.0 Algebra and
Functions | 1.0 Students use number sentences with
operational symbols and expressions to | | 1.OA: Represent and solve
problems accolving addition and
subtraction. (Cluster Statement) | Yes | tr. | | | 1.2 Compare and order whole numbers to 100 by using the symbols for less than, equal to, or greater than (<, =, >). 1.3 Represent equivalent florars of the same | Number and
Operations in
Base Ten | a witten numero. 1.NST.3: Compare two two-digit mumbers based on meanings of the tens and ones slight, recording the results of comparisons with the symbols s _i , a, and « | Yes | | | once process. 1.1 Write and solve number sentences from problem situations that express relationships involving addition and subtraction. | | 1.OA.1: Use addition and substantion within 20 to tolkw used problems involving situations of adding to, taking from partial comparing, with unknowns in all positions, e.g., by using objects, downings, and equations with a symbol for the unknown number to requested the problem.* | Yes | *Refers to table with consesses addition and subsection situation describes situation (e.g., Add to and Take from with result suthnoves, change suknoves start unknown, etc.). | | | 1.3 Represent equivalent forms of the same
number through the use of physical
models, diagrams, and number expectations
(to 20) (e.g., 3 may be represented as 4 +
4, 5 + 3, 2 + 2 + 2 + 2, 10 - 2, 11 - 3). | Operation and
Algebraic
Thinking | 1 OA 6: Add and subtract within
20, descentishing fluency for
addition and subtraction within 10.
Use traitegies such as counting on:
making ten (e.g. 8 - 6 - 8 - 2 + 4
= 10 - 4 = 14), decomposing a | | | - | 1.2 Understand the meaning of the symbols *, *, *. | Operations and
Algebraic
Thinking | symbol for the unknown number to
require at the problem.* 1.0A.7: Understand the mension
of the equal sign, and determine if
equations involving addition and
subtraction are true or false. | Yes | | | | | | One consequence of the conseque | | | | | 100000 | subtraction are true or false. | | | | | | | or known runn (e.g., adding 6 = 7
by creating the known equivalent 6
= 6 = 1 = 12 = 1 = 11) | | | Strand
Measurement and | CA Math Standard | | | | | | | 1.4 Count and group object in ones and
tens (e.g., three groups of 10 and 4 equals
34, or 30 = 4). | Number and
Operations in
Base Ten | LNBT.2: Understand that the two | Yes | | Measurement and
Geometry
1.0 Measurement
and Geometry | 1.0 Students use direct comparison and
nonstandard units to describe the | Measurement
and Data | 1 MD: Measure length: indirectly
and by iterating length units.
(Cluster Statement) | Yes | | | Strand | 34, or 30 = 4). | Base Ten
Domain | INBT 2: Understand that the two-
digits of a two-digit number
represent numeric fees and
ones. Understant the following as
special cases:
Common Core Standard (CCS)
a. 10 cm be throught of as a
brundle of two other-called a
"bed." | Alimment | Comments in reference to CCS | | measurements of objects. 1.1 Compare the length, weight, and volume of two or more objects by using direct comparison or a nonstandard unit. | Measurement
and Data | (Cluster Statement) 1 MD 1: Order three objects by length, compare the lengths of two objects indirectly by using a third object. | Partial | 3MD 2: Measure and estimate
liquid volumes and masses of
objects using standard units of
grams (g), kilopsium (kg), and
lines (l).* Add, subtract, | | | | | 10 can be thought of as a
bundle of ten ones-called a | | | | | | object. | | grams (g), kilograms (kg), and
liters (l).* Add, subtract, | | | | | brundle of the ones-called a "ben". b. The numbers thron 11 to 19 are energoned of a bea and one, two, there, from, five, interest, extra control. The numbers 10, 20, 30, 46, 50, 60, 70, 80, 80 sefer to one, two, three, four, five, int., seven, eight, or more beam (and 0 ones). | | 100 | Strand | CA Math Senudard | Domain | Common Core Standard (CCS) IMD 2: Express the length of an object as which analise of length vanish, by laying unshiple copies of a share object the length vanish, by laying unshiple copies of a share object the length and to not, understond that the length anaiousement of an object in the unshed of same-size length analises of same-size length coverage. Limit to content where the object being monatored is guerned by a whole number of length anits with no page or overlage. | Aligament | lines (0).* Add, subtract. Commants in reference to CCS multiply, or divide to solve exa- ting only popularity and the grown to be some under the grown to be some under the tree grown to be some units, og, by using chronings (such as a beaker with an incrementar tools) to represent the problem. **Exchalest compound units cm? and finding the prometric volume ef a certitater. | | | | | | | 2.3.00.% Solve word problems:
smooking dollar bills, quarters,
disars, noticels, and penuses, using
dollar signs and cents sign
appropriately. CCS does not introduce unnery or
first grade. The second grade
standard does expect knowledge | | 1.2 Tell time to the nearest half how and relate time to events (a.g., before before, | Mesouvement
and Data | ispanies by a vision temper of length units with no gapt or overlaps. LMD 3: Tell and write time in hours and half-bours using analog | Yes | Encludes assitiplicative comparison problems (problems are similar assistant of "finner as amosh", see glossary table dealing with common multiplication and division inhances.) | | 2.0 Number Sence | 2.0 Students demonstrate the meaning of | Operations and
Alesbraic | 1.OA: Represent and solve | Yes | of value and then computation. | 18 Manager | relate time to events (e.g., before lifter,
shorter longer). | and Data | hours and half-hours using analog
and digital clocks.
1.G: Reason with shapes and their
attributes. (Cluster Statement). | Yes | - | | | 2.0 Student: demonstrate the meaning of addition and subtraction and sus these operations to solve problems. 2.1 Know the addition facts (sums to 20) and the convergencing subtraction facts and committee them to memory. | Algebraic
Thinking
Operation and
Algebraic
Thinking | mbtraction. (Cluster Statement) 1. O.A.6: Add and subtract within 20, demonstrating finency for addition and subtraction within 10. | Partal | 2.OA.2: Finestly add and
subtract within 20 using mental
strategies.* By end of Grade 2.
know from memory all runs of
two one-digit numbers. | 2.0 Measurement
and Geometry | therter-longer). 2.0 Students identify common prometric figures, classify them by common attributes, and describe their relative position or their location in space. | Gittalia | attribute. (Cluster Statement). | 16 | K.G.4. Analyze and compare | | | | | 1.OA: Represent and solve problems servicing addition on release the model of the problems
problem | | know from memory all tume of
two con-digit numbers. | | | See the | 1.G.: Distinguish between | V. | K.G.4. Analyse and compute
two: and three-dissensional
chapts, in different trace and
extentionin, using informal
language to describe their
similarities, differences, parts
(e.g., number of index and
vertices? commer?) and other
attributes (e.g., having sides of
equal length). | | Strand | CA Math Steadard | Domain | Common Core Standard (CCS)
by creating the known equivalent
6+6+1=12+1=13).
1 OA.4: Understand subtraction as
an unknown-addend problem. | Aligament | Comments in reference to CCS | | 2.2 Classify finalism plane and solid
objects by consume attributes, such as
coles, position, thaps, size, considers, or
number of corners, and explain which
attributes are being used for classification. | Citatin) | are closed and three-sided) versus | | | | | 2.2 Use the inverse relationship between
addition and subtraction to solve problems. | Operations and | 6+6+1=12+1=13).
1 OA 4: Understand subtraction as | Yes | | Strand | attributes are being used for classification.
CA Math Standard | Domain | non-defizing attributes (e.g., color,
orientation, overall size); build and
Common Core Standard (CCS)
draw shapes to possess defizing | Alignment | Comments in reference to CCS | | | 2.3 Identify one more than, one less than,
10 more than, and 10 less than a given
number. | Algebraic
Thinking
Number and
Operations in
Base Ten | an transours-access process: 1.NBT.5: Geven a two-digit seasible, mentally find 10 soore or 10 less that the number, without having to count: explain the reasoning used. | Yes | | | | | draw thapes to possess defining
attributes. | | | | | 2.4 Count by 2s, 5s, and 10s to 100. | Couring and
Cardinality | having to count: explain the
reasoning tood. 1.OA.5: Relate counting to
addition and subtraction (e.g., by
counting on 2 to add 2). | Partial | K.CC.1: Count to 100 by ones
and by tens. | | | | | | action to the property of the environment using numes of thepes and describe the relative positions of these objects using terms ruch as above, below; beater, and property of the | | | - | Operations and
Algebraic
Thinking | counting on 2 to add 2). | | 2 NBT 2: Count within 1000; by
5s, 10s, and 100s. | Strand | | | | | metal to | | | | Thinking | | | | Analysis, and
Probability | CA Math Standard | | | | | | | | | | | K OA: (Charter Statement)
Understand addition as puring
together and adding to, and
understand subtraction as taking
apart and taking from | Strand Statistics, Data Analysis, and Probability 1.0 Statistics, Data Analysis, and Probability | 1.0 Students organize, represent, and
compare data by category on simple
graphs and charts. | Measurement
and Data | 1.MD: Represent and interpret
data (Charter Statement). | Yes | | | | | | LNBT 4: Add within 100, | | apart and taking from. | | popular const | | | | K.MD.3: Classify objects into | | | 2.6 Solve addition and subtraction
problems with one-and two-digit numbers
(e.g., 5 + 55 =). | Number and
Operations in
Base Ten | INSTA: Add within 100,
including adding a two-digit
number, and adding a two-digit
number and a multiple of 10, using
concrete models or drawings and | 165 | | | 1.2 Expressed and compare data (e.g., | | 13/D.4 Oceanin represent and | Yes | KMD3: Classify objects into
given categories; count the
numbers of objects in each
category and nort the categories
by count. | | | | | 118374. Add wethin 100, michding adding a two-digit mumber, and adding a two-digit mumber, and antique of 10, mixing occurred models or drawing; and mixingue from gainer within mixingue from a gainer within mixingue from a gainer within a substruction; mixingue from a factor of the substruction sub | | | | 1.3 Exponent and compare data (e.g.,
lasper, smallest, most offen, least offen)
by sings picture, but graphs, tally chart,
and picture graphs. | Measurement
and Data | 13/ID 4: Organize, represent, and interpret data with up to three categories; solt and anower questions about the total insuber of data points, how many an each category, and how many more or less are in one category than in another. | | | | | | | and togarither if it pecentary to compose a ten. | | | 2.0 Statistics, Data
Analysis, and
Probability | | | | | CCS mentions patterns in the
Mathematical Practice Standards
'mathematically proficient
students look closely to discern a | | Straud | CA Math Steadard | Domnia | Common Core Streeterd (CCS) | | Comments in reference to CCS | Strand | CA Math Streeterd | Downin | Common Core Standard (CCS) | Alignmen | students look closely to discern a
nation or structure."
Comments in reference to CCS | | | | | INBT.6: Subtrace multiples of 10 in the range 10-90 from subhples of 10 in the range 10-90 from subhples of 10 in the range 10-90 from subhples models or desiverage and vistage concrete models or desiverage and vistages haved on place visbes, properties of operations, and/or the subtraction, population, and/or the subtraction, related the transley to a visities matched and explain the reasoning used. | | | Strand
Mathematical | CA Moth Standard | | | | | | | | | related the strategy to a written
method and explain the reasoning | | | Mathematical
Reasoning
1.0 Methematical | CA Moth Standard 1.0 Students make decisions about how to not up a publism. | Mathematical | 1 MP.1 Make sense of mobbins | Yes | | | | 2.7 Find the rum of three one-digit
numbers. | Operations and
Algebraic
Thinking | 1.OA.2: Solve word problems that | Yes | | Reasoning | | Methemetical
Practice
Standards | 1.MP.1: Make sense of problems
and persevere in solving them. | | | | | | Thinking | call for addition of flares whole
numbers whose sum is less than or
equal to 20, e.g., by using objects,
drawings, and equations with a
symbol for the unknown number to
represent the problem. | | | | 1.1 Determine the approach, materials, and
strategies to be used. 1.2 Use tools, such as manipulatives or
shatches, to model problems. | Mathematical
Practice
Standards
Mathematical | 1.MP.5: Use appropriate tools strategically. 1.MP.4: Model with mathematics. | Yes
Yes | | | | | | 10A.5: Determine the unknown
whole number in an addition or
subtraction equation relating to
three whole numbers. | | | 2.0 Mathematical | Students solve problems and justify their | Practice
Standards
Mathematical | 1349.5: Use appropriate tools
strategically.
1349.3: Construct visible | Yes | | | 3.0 Number Sence | | | three whole numbers. | | CCS dows not spection extigation | Restoring | resconing | Mathematical
Practice
Standards | trategically. 1.MP.3: Construct viable argument; and critique the reasoning of others. 1.MP.4: Model with mathematics. | Yeo | | | | | | | | of quantities except in the
Mathematical Practice standards. | | 2.1 Explain the reasoning used and justify
the procedures selected. | Mathematical
Fractice
Standards
Mathematical | | | | | | | | | | numerion is then described as
"make conjectures about the form
and messing of the solution and | | 2.2 Make precise calculations and check
the validity of the results from the contest | Mathematical
Practice
Standards | 1 MP.6: Attend to precision. | Yes | | | | | | | | CCS does not mention withmather of quantities except in the Mathematical Practice standards. Estimation is then described in "made conjectures about the form and menuing of the solution and detect possible entors by strategically using estimation and other mathematical knowledge." | 3.0 Mathematical
Renoming | of the problem. 3.0 Students note connections between one problem and mother. | Standards
Mathematical
Practice
Standards | 1 MP.7. Look for and make use of
structure.
1 MP.S. Look for and express | Yes | | | | | | | | CCS does not mention estimation of quantities except in the Mathematical Practice standards. Extensions is the described as "make conjectures about the form and meaning of the solution and | | | | 1 MP.S: Look for and express
regularity in repeated reasoning. | | | | | | | | | and messing of the solution and | J | | | | | | #### 1999 Standards Removed Median Percentage of Standards Removed 34% ## Increased Focus on Key Content No longer "an inch deep and a mile wide" The remaining 1999 standards have been expanded upon, and greater depth in content instruction is expected # Increased Depth – 6th Grade Standards | 1999 | Т | CC | 1999 | 1 | CC | |---|------------------------------|---|---|--|--| | 1.2 Write and evaluate an algebraic
expression for a given situation, using
up to three variables. | Expressions and
Equations | 6.EE2: Write, read, and
evaluate expressions in which
letters stand for numbers. | Solve problems manually by using
the correct order of operations or by
using a scientific calculator. | Expressions and
Equations | 6 EE.2: Write, read, and evaluate
expressions in which letters stand
for numbers. | | |
 6.EE2a: Write expressions that
record operations with numbers
and with letters standing for
numbers. | | | 6.EE.2a: Write expressions that
record operations with numbers
and with letters standing for
numbers. | | | | 6.EE2b: Identify parts of an
expression using mathematical
terms (sum, term, product,
factor, quotient, coefficient);
view one or more parts of an
expression as a single entity. | | | 6.EE.2b: Identify parts of an
expression using mathematical
terms (sum, term, product, factor,
quotient, coefficient); view one or
more parts of an expression as a
single entity. | | | | 6.EE.2c: Evaluate expressions at
specific values of their variables.
Include expressions that arise from
formulas used in real-word
problems. Perform arithmetic
operations, including those | | | 6.EE.2c: Évaluate expressions at
specific values of their variables.
Include expressions that arise
from formulas used in real-word
problems. Perform arithmetic
operations, including those | | | - | involving whole number exponents, in the conventional order when there are no parentheses to specify a particular order (Order of Operations). | | | involving whole number
exponents, in the conventional
order when there are no
parentheses to specify a
particular order (Order of
Operations). | | 1.3 Apply algebraic order of
operations and the commutative,
associative, and distributive properties
to evaluate expressions; and justify | Expressions and Equations | 6.EE.1: Write and evaluate
numerical expressions involving
whole-number exponents. | | | 6.EE.3: Apply the properties of operations to generate equivalent expressions. | | each step in the process. | | 6.EE.2: Write, read, and
evaluate expressions in which
letters stand for numbers. | Students analyze and use tables,
graphs, and rules to solve problems
involving rates and proportions. | Ratio and
Proportional
Relationships | 6.RP. (Cluster statement) Understand ratio concepts and use ration reasoning to solve problems. | | | | 6.EE.2a: Write expressions that
record operations with numbers
and with letters standing for
numbers.
6.EE.2b: Identify parts of an | | | 6.RP.3: Use ratio and rate
reasoning to solve real-world
and mathematical problems, e.g.,
by reasoning about tables of
equivalent ratios, tape diagrams, | | | | expression using mathematical
terms (sum, term, product, factor,
quotient, coefficient); view one or
more parts of an expression as a | | | double number line diagrams, or equations. 6.RP.3a: Make tables of equivalent ratios relating | | | | single entity. 6.EE.2c: Evaluate expressions at specific values of their variables. Include expressions that arise from formulas used in real-word problems. Perform arithmetic | | | quantities with whole number
measurements, find missing
values in the tables, and plot the
pairs of values on the coordinate
plane. Use tables to compare
ratios. | | | | operations, including those involving whole number exponents, in the conventional order when there are no parentheses to specify a particular order (Order of Operations). | | | 6.RP.3b: Solve unit rate problems
including those involving unit
pricing and constant speed.
6.RP.3c: Find a percent of a
quantity as a rate per 100 (e.g.,
30% of a quantity) solve problems
involving finding the whole, given | | | | 6.EE.3: Apply properties of operations to generate equivalent expression. 6.EE.4: Identify when two | | | a part and the percent. 6.RP.3d: Use ratio reasoning of a quantity to convert measurement | | | | expressions are equivalent (i.e.,
when the two expression name the
same number regardless of which
value is substituted into them.) | | | units; manipulate and transform
units appropriately when
multiplying or dividing quantities. | | | Mathematical
Practices | 6.MP: Construct valid arguments
and critique the reasoning of
others | | | | #### Increased Depth – 6th Grade Standards | 6.EE.2: Write expressions that record operations with numbers and with letters standing for numbers. 6.EE.2.D: Identify parts of an expression using mathematical terms (sum, term, product, factor, quotient, coefficient); view one or more parts of an expression as a single entity. 6.EE.2: Evaluate expressions at specific values of their variables. Include expressions that arise form formulas used in real-word problems. Perform arithmetic operations, including those involving which ember are no parentheses to specify a particular order (Order of Operations). 6.EE.2: Write expressions that record operations with numbers and with letters standing for numbers. 6.EE.2: Write expressions shat record operations with numbers and with letters standing for numbers. 6.EE.2: Letters the expressions standing for numbers. 6.EE.2: Letters and the expression with letters lett | 1999 | 1 | CC | | 1 | СС | 1999 | 1 | CC | 1999 | | СС | |--|---|---------------------------|--|--|-----------------------------------
---|--|---------------------------|---|--|-----------------------------------|--| | | expression for a given situation, using up to three variables. 13 Apply algebraic order of operations and the commutative, associative, and distributive properties to evaluate expressions; and justify | Expressions and Equations | evaluate expressions in which letters stand for numbers. 6.E.E2a: Write expressions that record operations with numbers and with letters standing for numbers. 6.E.E2a: United by a standard standa | the correct order of operations or by using a scientific calculator. 2.0 Students analyze and use tables, graphs, and rules to solve problems | Equations Ratio and Proportional | expressions in which letters stand for numbers. 6.EE.2a. Write expressions that record operations with numbers and with letters standing for numbers. 6.EE.2b. Identify parts of an expression using nathematical terms (sum, term, product, factor, quotient, coefficient), view one or more parts of an expression as a single entity. 6.EE.2b. Evaluate expressions as a single entity. 6.EE.2c. Evaluate expressions at specific values of their variables. Include expressions that arise from formulas used in real-word problems. Perform arithmetic operations, including those involving whole number involving whole number of the properties of the properties of operations. 6.EE.3c. Evaluate expressions at a specific values of their values of their variables. Include expressions. 6.EP.3c. Evaluate expressions. 6.EP.3c. Evaluate expressions. 6.EP.3c. Evaluate and the resonance of the variables of equivalent ratios, tape diagrams, double number line diagrams, or equations. 6.EP.3c. Evaluate and the evaluation of the values in the tables and plot the pairs of values on the coordinate plane. Use tables to compare allows. 6.EP.3c. Find a percent of a quantities with the ables and plot the pairs of values on the coordinate plane. Use tables to compare allows. 6.EP.3c. Find a percent of a quantity as a rate per 100 (e.g., 30% of a quantity was a rate per 100 (e.g., 30% of a quantity was not appeared to the pairs of values and potenties and concerned and part and the percent. | expression for a given situation, using up to three variables. 1.3 Apply algebraic order of operations and the commutative, associative, and distributive properties to evaluate expressions; and justify | Expressions and Equations | evaluate expressions in which letters stand for numbers. 6.E.E2a: Write expressions that record operations with numbers and with letters standing for numbers. 6.E.E2a: Write expressions that record operations with numbers and with letters standing for numbers. 6.E.E.2a: Evaluate expressions at specific values of their variables. Include expressions that arise fundamental terms (sum, term, product, factor, quotient, coefficient); view one or more parts of an expression as a single entity. 6.E.E.2a: Evaluate expressions at specific values of their variables. Include expressions that arise fundamental condenses of their variables. Include expressions that arise fundamental expressions in which letters stand for numbers. 6.E.E.1a: Write and evaluate numerical expressions in which letters stand for numbers. 6.E.E.2a: Write, read, and evaluate expressions in which letters stand for numbers. 6.E.E.2b: Identify parts of an expression using mathematical terms (sum, term, product, factor, quotient, coefficient), view one or more parts of an expression as a single entity. 6.E.E.2b: Evaluate expressions as a single entity. 6.E.E.2b: Evaluate expression as a single entity of their variables. Include expressions that arise from formulas used in real-word problems. Per form a rithmetic variables. Include expressions are equivalent expression as a farticular order (Order of Operations). 6.E.E.3: Apply properties of operations to generate equivalent expressions are equivalent (e.e., when the two expressions name the same number regardless of which with the sime number regardless of which with when two expressions are equivalent (e.e., when the two expressions name the same number regardless of which with when two expressions are equivalent (e.e., when the two expressions and erritudal order of order and
expressions and entitled the them). 6.M.P. Construct valid arguments | the correct order of operations or by using a scientific calculator. 2.0 Students analyze and use tables, graphs, and rules to solve problems | Equations Ratio and Proportional | expressions in which letters stand for numbers. 6 EE 2a: Write expressions that record operations with numbers and with letters standing for numbers. 6 EE 2b: Identify parts of an expression using mathematical terms (sum, term, product, factor, quotient, coefficient), view one or more parts of an expression as a single entity. 6 EE 2b: Chemity parts of an expression as a single entity. 6 EE 2c: Evaluate expressions as a single entity. 6 EE 2c: Evaluate expressions as a single entity. 6 Include expressions that arise from formulas used in real-word problems. Perform arithmetic operations, including those expressions that arise from formulas used in real-word problems. Perform arithmetic operations, including those expressions. 6 EE 3: Apply the properties of operations to generate equivalent expressions. 6 EP 3: Certal and rate reasoning to solve problems. 6 EP 3: Certal and rate reasoning to solve problems. 6 EP 3: Certal and rate reasoning to solve problems. 6 EP 3: Certal and rate reasoning to solve problems. 6 EP 3: When the solve the solve the solve problems of equivalent ratios, tape diagrams, double number line diagrams, of equivalent ratios, tape diagrams, double number line diagrams, of equivalent ratios, tape diagrams, double number line diagrams, of equivalent ratios, tape diagrams, double number line diagrams, or equations. 6 EP 3b: Solve unit rate problems including those involving unit ricing and constant speed. 6 EP 3c: Find a percent of a quantity so are problems including those involving unit ricing and constant speed. 6 EP 3d: Use ratio reasoning of a quantity was an at per 100 (e.g., 30% of a quantity was an at per 100 (e.g., 30% of a quantity was an at per 100 (e.g., 30% of a quantity was an at per 100 (e.g., 30% of a quantity was an at per 100 (e.g., 30% of a quantity was an at per 100 (e.g., 30% of a quantity was an at per 100 (e.g., 30% of a quantity was an at per 100 (e.g., 30% of a quantity was an at per 100 (e.g., 30% of a quantity was an at per 100 (e.g., 30% of a quanti | #### Standards of Mathematical Practice The second layer of increased depth comes with a skill-based curriculum Students will be expected to apply mathematical content to real world situations using real world tools #### Standards of Mathematical Practice How could teachers help teach these skills? In your table groups, identify two possible instructional shifts for each of these standards. They can be general, or specific. Choose a spokesperson, and we'll do a share-out in two songs! #### Committee Responses 1-4 (not part of original presentation) - 1. Make sense of problems and persevere in solving them. - Spend time on the concept - Teach students to persevere they often either get stuck or just want a quick answer - Teach students to no just guess when they get frustrated - Have students share answers to the problem and discuss them - 2. Reason abstractly and quantitatively. - Understand origin of formula along with memorization of formula - Use manipulatives - 3. Construct viable arguments and critique the reasoning of others - Share out answers and discuss - Use social media to have students comment - It's difficult for small children to argue their side - Discuss why two correct answers can exist and examine each other's work - 4. Model with mathematics - Real life application - Answer "why do we do this?" - Use manipulatives #### Committee Responses 5-8 (not part of original presentation) - 5. Use appropriate tools strategically. - Use manipulatives in groups - Rulers, measuring tape, measuring cups/spoons - Technology Tools (iPad, scientific calculator) - Use estimation - Teaching tools teachers use tools as well - 6. Attend to precision. - Use correct language - Give complete and concise answers with correct labels - Use appropriate academic vocabulary to communicate thought process - 7. Look for and make use of structure. - Notice patterns and structure - Notice relationships - 8. Look for and express regularity in repeated reasoning. - Recognize repetition in solutions and explain the patterns - Develop shortcuts #### **Identify Necessary Instructional Shifts** The Common Core will demand a very different pedagogy for our students to perform well #### Common Core Foci - Process and Reasoning - Argument and Explanation - Modeling and Tools #### Standards Check Watch the following lessons involving the laws of quadrilaterals. • Give each lesson a grade, from A through F, for how well it addresses each of the Mathematical Standards of Practice. # **Group Check** Discuss with your group – how well did this lesson address each of the Mathematical Standards of Practice? We'll do a whip-around for each standard after two songs play, so make sure to select a spokesperson! #### Standards Check - Continued https://www.teachingchannel.org/videos/ geometry-lesson-quadrilaterals Follow the same process with this lesson – how well does it address each of these standards? # **Group Check** Discuss with your group – how well did this lesson address each of the Mathematical Standards of Practice? We'll do a whip-around for each standard after two songs play, so make sure to select a spokesperson! #### Elementary and Secondary Roles #### Elementary Research Smarter Balanced math assessments and create grade level elementary assessments. #### Secondary - Research Integrated and Traditional secondary math pathways, as well as accelerated pathways. - Make recommendation to the District on which pathways to use. ### Whole Committee Decision #### Math Technology Recommendation Which technology tools fit these proposed instructional and assessment shifts best? # **Expand Current Labs?** # Expand ActivBoard and Student Response System? ### **Expand or Adopt Student Devices?** #### **Common Core Math Transition Plan** All the recommendations this Committee makes will be included in this document The goal is to make this a clear, focused, and actionable document that can guide the future of math in SGUSD. #### Thanks For All Your Work! - We will meet again after LACOE trainings. - JMS: Oct. 8, 9, 18 - GHS: Nov. 7, 8, 15 - K-2: Jan. 13, 14, 24 - 3-5: Feb. 4, 5, 24 - I will e-mail a link to this PowerPoint and handouts to all of you. They will all be posted on the SGUSD Digital Community website. - Please do your best to keep your departments, grade levels, and sites informed! # Any Final Comments or Questions?